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Abstract— There are many finite-state and event-driven types
of discrete systems, e.g., manufacturing processes, industry
and welfare robots, and networked control systems, and so
on. However, the analysis and design of such discrete control
systems have not been established, because those systems have
severe nonlinear characteristics and do not respond continu-
ously in time. In this paper, the stability of discrete event control
systems is studied based on multiple metrics and simultaneous
inequalities. Especially, in this paper, the structures of discrete
event types of systems are analyzed using connection matrices
(i.e., permutation (0,1)-matrices). The relationship between con-
nection matrices and graph representations is also reviewed in
general. A stability condition is derived based on the concept of
nonnegative inverse matrices (so-called M -matrices). Numerical
examples were shown to clarify the stability and boundedness
of discrete-event control systems.

I. INTRODUCTION

There are many finite state and event-driven types of
discrete systems, e.g., manufacturing systems, industry and
welfare robots, computer networks, and so on. However, the
analysis and design of such discrete dynamic systems have
not been established [1], [2], [3], because those systems
have severe nonlinear characteristics and do not respond
continuously in time. In this paper, the stability of discrete-
event control systems are analyzed using multiple metrics,
simultaneous inequalities, and nonnegative and permutation
matrices [4], [5], [6], [7], [8]. As a result, a stability
condition is derived based on the concept of nonnegative
inverse matrices (so-called M -matrices [9]).

II. DISCRETE EVENT SYSTEMS AND STATE TRANSITION

In general, finite-state and discrete-event control systems
can be written as:

x(tk+1) = f(x(tk),e(tk)) (1)

k ∈ N := {0, 1, 2, . . . , N},
where x(·), e(·), and f(·, ·) are states, event-signals, and a
transition function, respectively, as written below:

x(tk) ∈ Zn, e(tk) ∈ Zm,f : Zn × Zm → Zn.

Although Z is considered a finite set of integers, we can also
define the following expression with resolution value γ:

Zγ := {−Nγ, · · · ,−2γ,−γ, 0, γ, 2γ, · · · , Nγ}.
Here, Zγ+ denotes its positive area, and Z1 = Z, Z+ = N.
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Fig. 1. State trajectories of a discrete event system.
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Fig. 2. State transition graph for a discrete event system.

Figure 1 shows an example of state (or output)
trajectory for an event-sequence {e1e2e3e3e2 · · · } (&
e4e1e2e2e4e3 · · · ). As is obvious, it can be considered
that the event sequence corresponds to the time sequence
{t1t2t3t4t5t6 · · · }. However, the causality relationship be-
tween them will be opposite. In addition, they are not one-
to-one correspondence.
In this paper, in order to study the relative stability prob-

lem of event-driven control systems [14], [17], we consider
the following form:

x(tk+1) = P(tk)x(tk) + G(e(tk))x(tk). (2)

Here, P(·) and G(·) are assumed to be piecewise constant
matrices for tk ≤ t < tk+1. When corresponding the
matrices to (1), the second term of (2) is written as

G(e(tk))x(tk) = f(x(tk),e(tk)) − P(tk)x(tk). (3)

If we consider simply E(tk) := G(e(tk)), the above expres-
sions can also be written as

x(tk+1) = P(tk)x(tk) + E(tk)x(tk), (4)

where

E(tk) =

⎡
⎢⎣

ε11(tk) . . . ε1n(tk)
...

. . .
...

εn1(tk) . . . εnn(tk)

⎤
⎥⎦ . (5)
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Here, each element is given by

εij(tk) =

(
fi(x(tk),e(tk)) −

n∑
l=1

εilxl(tk)

)
/xj(tk). (6)

Therefore, (2) can be rewritten as

x(tk) =

(
k−1∏
h=0

P(th)

)
x(t0)+

k∑
l=1

(
k−1∏
h=l

P(th)

)
E(tl−1)x(tl−1).

(7)
In the case of “packet losses” and/or “unexpected delays”,
the above expression will also be applied to the stability and
security of networked control systems [10], [11], [12].

III. CONNECTION MATRICES AND GRAPHS

When considering the structural properties of systems, we
define the following nonnegative constant matrix:

P(tk) ∈ I+ ⊆ Zn×n
+ , I+ := {0, 1}. (8)

Here, a matrix each of whose entries is either 0 or 1 is called
a (0,1)-matrix [5].
Directed graphs and cycles. The pair G = (V ,E) is
called a directed graph. Here, the elements of V are its
vertices, and the elements of E are the arcs (or edges) of
G. The arc (i, j) is said to join vertex i to vertex j. A
sequence of arcs (i, t1), (t1, t2), ..., (tm, j) in G is called a
path connecting i to j.
The length of the path is defined to be the number m of

arcs in the sequence. A path of length m connecting vertex
i to itself is called a cycle of length m. If each vertex in a
cycle appears exactly once as the first vertex of an arc, the
cycle is called a circuit. A cycle of length 1 is a self-loop.
Adjacency and permutation matrices. The adjacency
matrix A of a directed graph G with n vertices is the (0,1)-
matrix (also called connection matrix) whose (i, j) entry is
1 if and only if (i, j) is an arc of G. Especially, a square
matrix that has exactly one 1 in each row and column and
0’s elsewhere is called a permutation matrix [6], [7], [8].
With respect to a reccurent equation (4), consider the

following discrete event systems for n ≥ 3:

x(tk+1) = Cpx(tk) + E(th)x(tk), (9)

k = 0, 1, 2, · · · , k ≤ h < k + 1 (10)

where Cp (p = 1, 2 · · · , (n − 1)!) are cycles for n vertices.
That is, the nominal system is constant and cyclic. Here,
E(tk) is a kind of distubance written below:

E(th) = Cq(th) − Cp, (p �= q).

In this paper, using such structural matrices, (2) and (3) can
be written as follows:

x(tk) = Ck
px(t0) +

k∑
l=1

Ck−l
p E(tl−1)x(tl−1). (11)

Here, we consider cyclic (periodic) nominal systems. As for
third-order periodic systems, the permutation matrices are
given by

C1 =

⎡
⎣0 0 1

1 0 0
0 1 0

⎤
⎦ , C2 =

⎡
⎣0 1 0

0 0 1
1 0 0

⎤
⎦ ,

(a) (b)

Fig. 3. Cycles for n = 2.

(a) (b) (c)
Fig. 4. Cycles for n = 3 (1).

(a) (b) (c)
Fig. 5. Cycles for n = 3 (2).

and the directed graphs are as shown in Fig. 4 (a) and
(b)1. If self-loops (or separate-cycles) are permited, the (0,1)-
matrices are given by

S1 =

⎡
⎣1 0 0

0 0 1
0 1 0

⎤
⎦ , S2 =

⎡
⎣0 0 1

0 1 0
1 0 0

⎤
⎦ , S3 =

⎡
⎣0 1 0

1 0 0
0 0 1

⎤
⎦ ,

and the directed graphs are as shown in Fig. 5.
Furthermore, as for fourth-order periodic systems, the

permutation matrices are given by

P41 =

⎡
⎢⎢⎣
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦ , P42 =

⎡
⎢⎢⎣
0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

⎤
⎥⎥⎦ , P43 =

⎡
⎢⎢⎣
0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0

⎤
⎥⎥⎦

PT
41 =

⎡
⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎤
⎥⎥⎦ , PT

42 =

⎡
⎢⎢⎣
0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

⎤
⎥⎥⎦ , PT

43 =

⎡
⎢⎢⎣
0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

⎤
⎥⎥⎦

and the directed graphs are as shown in Figs. 6 and 7.
Figure 8 shows examples of the permutation graph in which
self-loops or or separate-cycles are permitted.
In general, there are (n−1)! permutations with respect to n

vertices (i.e., (n−1)! directed graphs (n-cycle digraphs)). If
self-loops or separate-cycles are permitted, n directed graphs
can be obtained. Figure 9 shows examples of the permutation
graphs for n = 5.

IV. MULTIPLE METRICS AND INEQUALITIES

The metric in the state space (i.e., vector space) is usually
defined by a scalar value. However, it may lead to a severe

1For reference, cycles of the directed graph for n = 2 are given as shown
in Fig. 3 (a) and (b). In these graphs, the dotted lines are hypothetical edges.
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Fig. 6. Cycles for n = 4 (1).

Fig. 7. Cycles for n = 4 (2).

Fig. 8. Cycles for n = 4 (3).

condition for the stability of some kind of nonlinear systems.
Therefore, we consider the metric (i.e., �∞-norm) for each
element of the state as follows:

‖xi(tk)‖�∞ := sup
1≤l≤k

|xi(tl)| ∈ Z+. (12)

Furthermore, in this paper, we can define a new metric (i.e.,
�1-norm),

‖xi(tk)‖�1 =
k∑

l=1

|x(tl)| ∈ Z+. (13)

When considering multiple metrics, the following vector
expression can be defined:

‖x(tk)‖ =

⎡
⎢⎢⎢⎣
‖x1(tk)‖
‖x2(tk)‖

...
‖xn(tk)‖

⎤
⎥⎥⎥⎦ ∈ Zn

+, (14)

where ‖xi(tk)‖ are ‖xi(tk)‖�∞ or ‖xi(tk)‖�1
2.

Based on these considerations, the following inequalities
are obtained from (11) 3:

‖x(tk)‖ � ‖x̄(tk)‖ +
∥∥∥ k∑

l=1

Ψ(tk, tl)x(tl−1)
∥∥∥, (15)

Fig. 9. Examples of cycles for n = 5.

2Hereafter, each of them is written simply as ‖ · ‖. However, in the
following examples, only ‖ · ‖�∞ will be considered.
3Inequality symbols for matrices and vectors are based on [13]

where x̄(tk) is the nominal system, i.e.,

x̄(tk) = Ck
px(t0)

and Ψ(tk, tl) is a new transition matrix in (11) as follows:

Ψ(tk, tl) = Ck
pE(tl−1).

Here, we consider the following nonnegative matrix:

‖Θ(tk)‖ :=

⎡
⎢⎣
‖θ11(tk)‖ . . . ‖θ1n(tk)‖

...
. . .

...
‖θn1(tk)‖ . . . ‖θnn(tk)‖

⎤
⎥⎦ ,

where,

‖θij(tk)‖ =
∥∥∥ k∑

l=1

ψij(tk, tl)xj(tl−1)
∥∥∥/‖xj(tk)‖

‖θij(tk)‖ ∈ R+ i, j = 1, 2, · · · , n.

Therefore, inequality (15) is written as

‖x(tk)‖ � ‖x̄(tk)‖ + ‖Θ(tk)‖ · ‖x(tk)‖. (16)

Moreover, it can be given as follows:(
I − ∥∥Θ(tk)

∥∥)
‖x(tk)‖ � ‖x̄(tk)‖. (17)

Here, we write the above inequality as:(
I − C

)
X � Y , (18)

where C � 0, X � 0, and Y � 0 correspond to ‖Θ(tk)‖,
‖x(tk)‖, and ‖x̄(tk)‖, respectively.

V. NONNEGATIVE INVERSE MATRICES

Consider the following square matrix:

A =

⎡
⎢⎢⎢⎣

a11 −a12 . . . −a1n

−a21 a22 . . . −a2n

...
...

. . .
...

−an1 −an2 . . . ann

⎤
⎥⎥⎥⎦ , (19)

where aij ≥ 0 (i, j = 1, 2, · · · , n). It is said that the
most common situation in the biological, physical, and social
sciences is where the matrix A has nonpositive off-diagonal
and nonnegative diagonal entries [4]. Of course, it can simply
be written as A = [ai,j ]. However, in this paper, the
expression of (19) will be used in order to clarify the sign
of each element.
If we apply A to I − C in (18), with respect to

C =

⎡
⎢⎣

c11 . . . c1n

...
. . . . . .

cn1 . . . cnn

⎤
⎥⎦ (20)

1 − cii ≥ 0 and cij ≥ 0 (i �= j) are obtained, though
1 − cii > 0 is considered in the engineering applications.
Lemma. For any 0 � Y < ∞, we can obtain 0 �
X < ∞ if and only if A = I − C is a nonnegative-inverse
matrix [13].
Proof. The proof is obtained from the property of
nonnegative-inverse matrix (i.e., A−1 � 0). �
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Based on the above, the stability (i.e., boundednes) con-
ditions is given as follows.

Definition. If ‖x̄(tk)‖ � Y leads to ‖x(tk)‖ � X for all
k ∈ N, the discrete event system is defined as (finite-time)
stable in a relative sense [14]. Here, X and Y are vectors
of some finite (positive) numbers. �
Thus, the following theorem is given.

Theorem. If A = I −C = I −‖Θ(tk)‖ is a nonnegative-
inverse matrix (i.e., Ostrowski’s M -matrix), the system is
stable (and bounded) in a relative sense. That is, a finite
X ∈ Zn

+ can be obtained for any Y ∈ Zn
+.

Proof. The condions of nonnegative-inverse matrix for A =
I − C are given as follows.

(1) ρ(C) := max
1≤i≤n

|λi| < 1, where λi are eigen-

values of C.
(2) The principal minors of A are all positive (i.e.,
∆i > 0, 1 ≤ i ≤ n).

In this paper, we will prove the above (2). The simultane-
ous inequality (18) is written as⎡

⎢⎢⎢⎣
a11 −a12 . . . −a1n

−a21 a22 . . . −a2n

...
...

. . .
...

−an1 −an2 . . . ann

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

x1

x2

...
x3

⎤
⎥⎥⎥⎦ �

⎡
⎢⎢⎢⎣

y1

y2

...
y3

⎤
⎥⎥⎥⎦ . (21)

By using an elimination method, the above inequality can be
rewritten as follows:⎡

⎢⎢⎢⎢⎣
a
(1)
11 −a

(1)
12 . . . −a

(1)
1n

0 a
(2)
22 . . . −a

(2)
2n

...
...

. . .
...

0 0 . . . a
(n)
nn

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x
(1)
1

x
(1)
2
...

x
(1)
n

⎤
⎥⎥⎥⎥⎦ �

⎡
⎢⎢⎢⎢⎣

y
(1)
1

y
(2)
2
...

y
(n)
n

⎤
⎥⎥⎥⎥⎦ , (22)

where

a
(1)
ij = aij , x

(1)
j = xj , y

(1)
i = yi (i, j = 1, 2, · · · , n).

Furthermore,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a
(2)
ii =

1

a
(1)
11

∣∣∣∣∣ a
(1)
11 −a

(1)
1i

−a
(1)
i1 a

(1)
ii

∣∣∣∣∣ , a
(2)
ij =

1

a
(1)
11

∣∣∣∣∣ a
(1)
11 −a

(1)
1j

−a
(1)
i1 −a

(1)
ij

∣∣∣∣∣ ,

(i, j = 2, 3)
...

a(n)
nn =

1

a
(n−1)
n−1 n−1

∣∣∣∣∣a
(n−1)
n−1 n−1 −a

(n−1)
n−1 n

−a
(n−1)
n n−1 a

(n−1)
nn

∣∣∣∣∣ .

Therefore, the right side of (17) can be written as

y
(1)
1 = y1, y

(2)
2 = y

(1)
2 +

a
(1)
21

a
(1)
11

y
(1)
1 , y

(3)
3 = y

(2)
3 +

a
(2)
32

a
(2)
22

y
(2)
2 ,

· · · · · · , y(n)
n = y(n−1)

n +
a
(n−1)
n n−1

a
(n−1)
n−1 n−1

y
(n−1)
n−1 ,

provided a
(1)
11 > 0, a

(2)
22 > 0, · · · , a

(n−1)
n−1 n−1 > 0. It can be

seen that these values are non-negative and bounded if each
vector yi is bounded (i.e., y

(1)
i < ∞, i = 1, 2, · · · , n). In

addition, if a
(n)
nn > 0 is satisfied, then x

(1)
n < ∞, x

(1)
n−1 <

∞, · · · , and x
(1)
1 < ∞ are obtained in reverse order.

Here, it should be noted that the above conditions a
(1)
11 >

0, a(2)
22 > 0, a(3)

33 > 0, · · · , a
(n)
nn are rewritten as follows:

a
(1)
11 = ∆1 = a11 > 0

a
(2)
22 =

∆2

∆1
=

∣∣∣∣ a11 −a12

−a21 a22

∣∣∣∣ �a11 > 0

a
(3)
33 =

∆3

∆2
=

∣∣∣∣∣∣
a11 −a12 −a13

−a21 a22 −a23

−a31 −a32 a33

∣∣∣∣∣∣ �

∣∣∣∣ a11 −a12

−a21 a22

∣∣∣∣ > 0

...

a(n)
nn =

∆n

∆n−1
=∣∣∣∣∣∣∣∣

a11 −a12 . . . −a1n

−a21 a22 . . . −a2n

...
...

. . .
...

−an1 −an2 . . . ann

∣∣∣∣∣∣∣∣
�

∣∣∣∣∣∣∣
a11 . . . −a1 n−1

...
. . .

...
−an−1 1 . . . an−1 n−1

∣∣∣∣∣∣∣ > 0.

These conditions say that all principal minors of matrix A
are positive (i.e., ∆i > 0, 1 ≤ i ≤ n) [15], [16], [17]. It
means that the matrix becomes a nonegative-inverse matrix,
that is, Ostrowski’s M -matrix.

VI. NUMERICAL EXAMPLES

Example 1. Consider the following recurrent third-order
system disturbed by some uncertain event-signals:[

x1

x2

x3

]
k+1

=

[
0 0 1
1 0 0
0 1 0

] [
x1

x2

x3

]
k

+

[
0 0 ε13

ε21 0 0
0 ε32 0

]
k

[
x1

x2

x3

]
k

.

The nominal system of this example is periodic with a
period n = 3 as shown in Fig. 4 (a). Here, we assume that
disturbed event-signals ε13 = 0.1, ε21 = −0.1, and ε32 =
0.05 are inserted periodically as shown in Fig. 10. Figure 11
shows state traces from x1(0) = −2.0, x2(0) = 2.0, x3(0) =
1.0 for tk ≤ 200. The state trace representation in the 3D
coordinates is given as shown in Fig. 12. The response will
be pseudo-periodic and obviously bounded (i.e., relatively
stable) for tk ≤ 200. Figure 13 shows the time-sequences of
∆i (i = 1, 2, 3). From this figure, the stabilty condition will
be satisfied at least in the area, tk ≤ 150.
On the other hand, Fig. 14 shows the case where the

disturbed signals are given as ε13 = 0.2, ε21 = −0.2, and
ε32 = 0.1. Figure 15 shows state traces from x1(0) = −2.0,

Fig. 10. Time series of event signals; peak values ε13 = 0.1, ε21 = −0.1,
and ε32 = 0.05.
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Fig. 11. State traces when x1(0) = −2.0, x2(0) = 2.0, and x3(0) = 1.0.

Fig. 12. A state trace in the 3D coordinates (tk ≤ 200).

x2(0) = 2.0, x3(0) = 1.0 (same as the above) for tk ≤
200. In this case, the state trace representation in the 3D
coordinates is given as shown in Fig. 16. The response
becomes not periodic but rather chaotic. Figure 17 shows
the time-sequences of ∆i (i = 1, 2, 3). From these figures,
the stabilty condition will not be satisfied in most areas.

Example 2. In this example, we consider the cases where
some connections of the discrete-event system are failed as
shown in Fig. 18. Figure 19 shows the state trace in the 3D
coordinates when only the first failure ε13 is occured. In this
case, the trajectory will be settled into an another periodic
one (a triangle).
On the other hand, when three failures are occured as

shown in Fig. 18, the trajectories may diverge. Figure 20
shows the time series of state traces. The state trace in the
3D coordinates is given as shown in Fig. 21. In this case,
the stability will not be guranteed. The time-sequences of
∆i (i = 1, 2, 3) become as shown in Fig. 22.

∆1 ∆2 ∆3

Fig. 13. Time series of ∆1, ∆2, and ∆3.

Fig. 14. Time series of event signals; peak values ε13 = 0.2, ε21 = −0.2,
and ε32 = 0.1.

Fig. 15. State traces when x1(0) = −2.0, x2(0) = 2.0, and x3(0) = 1.0.

Fig. 16. A state trace in the 3D coordinates (tk ≤ 200).

Fig. 17. Time series of ∆1, ∆2, and ∆3.
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Fig. 18. Examples of event signals; peak values ε13 = −1.0 or {ε13 =
−1.0, ε21 = 1.0 and ε32 = −1.0}.

Fig. 19. A state trace in the 3D coordinates (tk ≤ 200).

Fig. 20. State traces when x1(0) = −1.0, x2(0) = 1.0, and x3(0) = 1.0.

Fig. 21. A state trace in the 3D coordinates (tk ≤ 200).

Fig. 22. Time series of ∆1, ∆2, and ∆3.

VII. CONCLUSIONS

The stability of discrete-event control systems has been
studied using multiple metrics and simultaneous inequalities.
Especially, in this paper, the structures of discrete even
systems were analyzed based on connection matrices (i.e.,
permutation (0,1)-matrices). The relationship between con-
nection matrices and graph representations was also reviewed
in general. As a result, a stability condition was derived based
on the concept of nonnegative inverse matrices (so-called
M -matrices). Numerical examples were shown to clarify the
stability and boundedness of discrete-event control systems.
The result will be useful for the analysis and design of
discrete control systems in general.
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