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Abstract: This paper deals with a designing problem of discrete-time and discrete-value (discretized)
control systems based on a model-reference feedback structure. The model used in this study is assumed
to be a second-order lag system that is expressed by a bilinear transformation. That type of discretized
(nonlinear) control systems is presented and analyzed. The model reference feedback using a second-
order continuous-value (linear) system is equivalently transformed into a traditional PID control. The
robust stability analysis and design of such nonlinear control systems is examined in a frequency
domain. Numerical examples for model-reference type discretized control are provided to verify the
design method.
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1. INTRODUCTION

Almost all feedback control systems are realized using dis-
cretized (discrete-time and discrete-value) signals. However,
the analysis and design of discretized/quantized control sys-
tems has not been entirely elucidated. An attempt to elucidate
the quantized control systems was presented first in a paper
(Kalman [1956]). Since then, the problem of mitigating the
quantization effects in quantized control systems has been stud-
ied (Delchamps [1990], Elia and Mitter [2001], Fu [2003]).
However, few results have been obtained for the analysis and
design of that type of nonlinear discrete-time control systems
(Desoer and Vidyasagar [1975]).

In our previous papers (Okuyama [2006, 2008, 2009]), the ro-
bust stabilization of nonlinear discrete-time and discrete-value
(discretized) control systems was examined in a frequency do-
main. In the study, a traditional (discrete-time) PID control
scheme was used in the controller design. In the design pro-
cedure, the concept of a modified Nyquist and Hall diagram
(off-axis M-circles) for nonlinear control systems in (Okuyama
et al. [2002a]) is applied.

This paper describes a designing problem of such discretized
control systems based on a model-reference feedback struc-
ture. The model-reference feedback using a second-order
continuous-value (linear) system is equivalently transformed
into a traditional PID control. This control scheme is referred to
as a quasi-PID control in this paper. The robust stability analy-
sis and design of such nonlinear control systems is examined in
a frequency domain.

2. BILINEAR TRANSFORMATION AND MODEL
REFERENCE FEEDBACK

Model reference feedback structure for a robust control system
was once proposed by the author. A discrete-time version of
the model reference feedback was presented in (Takemori and
Okuyama [2000]). In this paper, a discretized model reference
control system as shown in Fig. 1 is examined. Here, P (s) is
a continuous-time and continuous-value plant, and P (z) is the
z-transform of P (s) together with the zero-order hold H. On
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Fig. 1. Model-reference discrete control system.

Fig. 2. Discretized nonlinear characteristics (K = 1.0).

the other hand, N(·), D1 and D2 are a nonlinear element and
the input and output discretizing units which are determined by
sensor and actuator elements. In the figure, each symbol e, v,
· · · indicates the sequence e(k), v(k), · · · , (k = 0, 1, 2, · · · )
in discrete time, but for continuous value. On the other hand,
each symbol e†, v†, · · · indicates a discrete value that can be
assigned to an integer number, e.g.,

e† ∈ {· · · ,−2γ1,−γ1, 0, γ1, 2γ1, · · · },
v† ∈ {· · · ,−2γ2,−γ2, 0, γ2, 2γ2, · · · }, (1)
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where γ1 and γ2 are the resolution of each variable. The
discretized nonlinear characteristic v† = Nd(·) is depicted as
shown in Fig. 2. The resolutions in D1 and D2 are chosen as
γ1 = 2.0 and γ2 = 1.0 in this example. Dc1 and Dc2 are the
discretizing units in the discrete-time model KPm(z) and the
feedback compensator F (z). Those resolutions are considered
γc1 = γc2 = γ2/n. Thus, when n → ∞, the controller part can
be considered a linear continuous system.

In this study, the model system, KPm(z) (K: nominal linear
gain of Nd(·)), is assumed to be a second-order lag system,
e.g.,

KPm(z) = KP̃m(δ) =
K

1 + C1δ + C2δ2
, (2)

where δ is the following bilinear transformation:

δ =
2

h
· z − 1

z + 1
(h : sampling period). (3)

Here, C1 and C2 are the design parameters of the model system.

The z-transform expression of (2) is given by

KPm(z) =
Kh2(z + 1)2

h2(z + 1)2 + 2C1h(z + 1)(z − 1) + 4C2(z − 1)2
.

(4)
Obviously, δ approaches Laplace transform variable s, when
the sampling period is h → 0.

The operator δ has the following properties:

(1) Since δ−1 =
h

2
· 1 + z−1

1 − z−1
, the relationship between the

input and output sequences, x(k), y(k), (k = 0, 1, 2, · · · )
can be written as:

y(k) = y(k − 1) +
h

2
(x(k) + x(k − 1)). (5)

This transformation corresponds to a trapezoidal summa-
tion (integration).

(2) On the other hand, with respect to the operator δ, the
following relation can be obtained:

y(k) = −y(k − 1) +
2

h
(x(k) − x(k − 1)). (6)

In this paper, δ will be used instead of z-transform operator.
Therefore, the feedback compensator F (z) as shown in Fig. 1
is defined as:

F (z) = F̃ (δ) =
1 + C1δ + C2δ

2

K(1 + c1δ + c2δ2)
. (7)

Here, c1 and c2 are considered the design parameters of the
feedback compensator. Thus, the z-transform expression of (7)
is written as:

F (z) =
h2(z + 1)2 + 2C1h(z + 1)(z − 1) + 4C2(z − 1)2

K(h2(z + 1)2 + 2c1h(z + 1)(z − 1) + 4c2(z − 1)2)
.

(8)

In the frequency domain, δ can be expressed as:

δ(ejωh) = jΩ(ω) = j
2

h
tan

(

ωh

2

)

, j =
√
−1, (9)

where Ω is a distorted frequency of ω. Using this expression,
(2) and (7) can be written as follows:

KPm(ejωh) = KP̃m(jΩ) =
K

1 − C2Ω2 + jC1Ω
, (10)

and

F (ejωh) = F̃ (jΩ) =
1 − C2Ω

2 + jC1Ω

K(1 − c2Ω2 + jc1Ω)
. (11)
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Fig. 3. Second order model-reference feedback.

K

g(·)

P (z) 1+C1δ+C2δ2

c1δ+c2δ2

K(1+c1δ+c2δ2)
1+C1δ+C2δ2

� � �

���

��

�

�

�

�

�

�

� �

� �� �� �

�

r ν

w†

v†e

y r′

+

+ ++

+

−

+

+

+

+

d C(z) D(z)

Nd(·)

Fig. 4. Quasi-PID control system.

The block diagram of model-reference control systems can be
redrawn as shown in Fig. 3.

3. QUASI-PID CONTROL AND ITS IMPROVEMENT

When controllers are in high resolution, i.e., n → ∞, the
model-reference control system as shown in Fig. 1 can be trans-
formed into Fig. 4. Here, ν is a disturbance signal generated by
the discretization of controllers. The equivalent controller C(z)
and the pre-compensator D(z) are given by

C(z) = C̃(δ) =
1 + C1δ + C2δ

2

c1δ + c2δ2
, (12)

D(z) = D̃(δ) =
K(1 + c1δ + c2δ

2)

1 + C1δ + C2δ2
. (13)

Here, C(z) can be considered to be a controller when c2 ≪ c1.
If c2 → 0, the controller is approximately written as:

C̃(δ) =
1

c1
δ−1 +

C1

c1
+

C2

c1
δ. (14)

When the sampling period is h → 0, δ becomes Laplace
transform variable s. Therefore, the scheme will correspond to
a traditional continuous PID control.

The z-tranform of (14) is given by

C(z) =
h

2c1
· z + 1

z − 1
+

C1

c1
+

2C2

c1h
· z − 1

z + 1
. (15)

In the distorted frequency domain, it can be expressed as

C̃(jΩ) =
C1

c1
+ j · 1

c1

(

C2Ω − 1

Ω

)

. (16)

These algorithms (12) and (15) are referred to as quasi-PID
control in this paper.

With respect to higher-order and time-delay plants, the model
system KPm(z) can be improved by

KP̃m(δ) =
K

1 + C1δ + C2δ2
· e−Lms, (17)
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where Lm is the inserted time-delay of the model system. Since
the feedback compensator that has a time-lead characteristic
cannot be realized, the quasi-PID controller should be written
as:

C̃(δ) =
1 + C1δ + C2δ

2

K(1 + c1δ + c2δ2) − z−dm

, dm = Lm/h. (18)

4. SUM OF TRAPEZOIDAL AREAS

The discretized nonlinear characteristics as shown in Fig. 2 is
partitioned as follows:

v† = Nd(e
†) = Ke† + g(e†), 0 < K < ∞, (19)

|w†| = |g(e†)| ≤ ḡ < ∞, for |e†| < ε, (20)

|w†| = |g(e†)| ≤ β|e†|, for |e†| ≥ ε (21)

in regard to e† ∈ e. Therefore, when analyzing the robust sta-
bility in a global sense, it is sufficient to consider the nonlinear
term (21), because the nonlinear term (20) can be treated as a
disturbance signal. In this study, since the nonlinear character-
istic (19) is assumed to exist in the first and the third quadrant,
the sector parameter β should be considered in the following
range:

0 ≤ β ≤ K. (22)

The robust stability of discretized systems as shown in Fig. 4 is
analyzed based on the inner-product and norm analysis in the ℓ2
space. In regard to (21), the following new nonlinear function
can be defined:

f(e) := g(e) + β · e. (23)

When considering the discretized output of the nonlinear char-
acteristic, w† = g(e†), the following expression is given:

f(e†(k)) = w†(k) + β · e†(k). (24)

From inequality (21), it can be seen that the function (24)
belongs to the first and third quadrants.

For the neutral points of e†(k) and w†(k), the following expres-
sion is given from (24):

1

2
(f(e†(k)) + f(e†(k − 1))) = w†

m(k) + βe†m(k), (25)

where

w†
m(k) =

w†(k) + w†(k − 1)

2
, e†m(k) =

e†(k) + e†(k − 1)

2
,

The trapezoidal area of one-step transition on the grid pattern
f(e) is, therefore, written as follows:

τ(k) :=
1

2
(f(e†(k)) + f(e†(k − 1)))∆e†(k)

= (w†
m(k) + βe†m(k))∆e†(k). (26)

Here, ∆e†(k) is the backward difference of sequence e†(k).

∆e†(k) = e†(k) − e†(k − 1).

Since f(e†(k)) belongs to the first and third quadrants, the area
of each trapezoid τ(k) is non-negative when e(k) increases
(decreases) in the first (third) quadrant. On the other hand,
the trapezoidal area τ(k) is non-positive when e(k) decreases
(increases) in the first (third) quadrant.

In our study, the following assumption is provided with respect
to the discretized response on a grid pattern.

Assumption. The absolute value of the backward difference of
sequence e(k) does not exceed γ, i.e.,

|∆e(k)| = |e(k) − e(k − 1)| ≤ γ. (27)

1 + qδ g∗(·)

βqδ
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Fig. 5. Nonlinear subsystem.

g∗(·)

W (β, q, δ)

�

�

� �

���

�

r′ e∗ w∗

u′y′ d′

+

−

+

+

Fig. 6. Equivalent feedback system.

If condition (27) is satisfied, ∆e†(k) is exactly ±γ or 0 because
of the discretization. That is, the absolute value of the backward
difference can be given as

|∆e†(k)| = |e†(k) − e†(k − 1)| = γ or 0. �

This assumption will be satisfied in the following examples.

Consider the following sum of trapezoidal areas:

σ(p) =

p
∑

k=1

τ(k). (28)

If the above assumption is satisfied with respect to the dis-
cretization of the control system, the sum of trapezoidal ar-
eas, σ(p), becomes non-negative for any p. Since the dis-
cretized output traces the same points on the stepwise non-
linear characteristic, the sum of trapezoidal areas is canceled
when e(k) (and e†(k) decreases (increases) from a certain
point (e†(k), f(e†(k))) in the first (third) quadrant. (Here,
without loss of generality, the response of discretized point
(e†(k), f(e†(k))) is assumed to commence at the origin.)

From equation (26), the sum of trapezoidal areas can be ex-
pressed as follows:

σ(p) :=
1

2

p
∑

k=1

(f(e†(k)) + f(e†(k − 1)))∆e†(k)

= 〈 w†
m(k) + βe†m(k),∆e†(k) 〉p (29)

Here, 〈·, ·〉p denotes the inner product in the ℓ2 space,

〈 x1(k), x2(k) 〉p =

p
∑

k=1

x1(k)x2(k).

5. ROBUST STABILITY IN A GLOBAL SENSE

In order to derive the robust condition, the following new
sequences are considered here:

e∗†m (k) = e†m(k) + q · ∆e†(k)

h
, (30)

w∗†
m (k) = w†

m(k) − βq · ∆e†(k)

h
. (31)

where q is a non-negative number. The relationship between
equations (30) and (31) is as shown in Fig. 5. Based on these
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sequences, the following lemma is given (Okuyama et al.
[1999]):

Lemma 1. If the following inequality is satisfied with respect to
the inner product of the neutral points of (24) and the backward
difference:

〈 w†
m(k) + βe†m(k),∆e†(k) 〉p ≥ 0, (32)

the following inequality can be obtained:

‖w∗†
m (k)‖2,p ≤ β‖e∗†m (k)‖2,p ≤ β‖e∗m(k)‖2,p (33)

for any q ≥ 0. Here, ‖ · ‖2,p denotes the Euclidean norm, which
can be defined by

‖x(k)‖2,p :=

(

p
∑

k=1

x2(k)

)1/2

.

Proof. The proof is given in (e.g., Okuyama [2006]). �

By applying a small gain theorem to the loop transfer charac-
teristic, the following robust stability condition for discretized
nonlinear control systems can be derived (Okuyama [2008]).

Theorem 2. If there exists a q ≥ 0 in which the sector parame-
ter β with respect to nonlinear term g(·) satisfies the following
inequality, the discrete-time control system with sector nonlin-
earity (21) is robust stable in an ℓ2 sense:

β < β0 = K · η(q0, ω0) = max
q≥0

min
ωc≥ω>0

K · η(q, ω), (34)

when the linearized system with nominal gain K is stable. That
is, the allowable sector can be given as [0, β0] from (34). Here,
ωc is a cut-off frequency that is defined based on the sampling
theorem. The η-function is written as follows:

η(q, ω) :=

−qΩV +
√

q2Ω2V 2 + (U2 + V 2){(1 + U)2 + V 2}
U2 + V 2

,(35)

where U(ω) and V (ω) are the real and the imaginary parts of
the loop transfer function KP (ejωh)C(ejωh).

Proof. The loop transfer function from w∗ to e∗ can be given
by W (β, q, δ) as shown in Fig. 6, where

W (β, q, δ) =
(1 + qδ)P (δ)C(δ)

1 + (K + βqδ)P (δ)C(δ)
, (36)

and r′, d′ are transformed exogenous inputs. Here, the variables
such as e∗, w∗, u′ and y′ written in Fig. 6 indicate the δ-
transformed ones.

Based on the loop characteristic in Fig. 6, the following inequal-
ity can be given with respect to δ = jΩ:

‖e∗m(δ)‖2,p ≤ k1‖r′m(δ)‖2,p + k2‖d′m(δ)‖2,p

+ sup
δ=jΩ

|W (β, q, δ)| · ‖w∗†
m (δ)‖2,p. (37)

Here, r′m(δ) and d′m(δ) denote the δ-transformation for the
neutral points of sequences r′(k) and d′(k), respectively. More-
over, k1 and k2 are positive constants.

By applying the result of Lemma 1, the following expression
can be obtained:

(

1 − β · sup
δ=jΩ

|W (β, q, δ)|
)

‖e∗m(δ)‖2,p

≤ k1‖r′m(δ)‖2,p + k2‖d′m(δ)‖2,p. (38)

Therefore, if the following inequality is valid,

|W (β, q, jΩ)| =
∣

∣

∣

∣

(1 + jqΩ(ω))(U(ω) + jV (ω))

K + (K + jβqΩ(ω))(U(ω) + jV (ω))

∣

∣

∣

∣

<
1

β
. (39)

the sequences e∗m(k), em(k), e(k) and y(k) are restricted in
finite values, when exogenous inputs r(k), d(k) are finite and
p → ∞. From the square of both sides of inequality (39), the
result of theorem is given. �

6. NYQUIST CURVE AND OFF-AXIS M-CIRCLES

The design method is based on a Nyquist curve and off-axis
M-circles. In the previous papers (Okuyama et al. [2002a,b]),
the inverse function was used instead of the η-function, i.e.,

ξ(q, ω) =
1

η(q, ω)
. Using this notation, inequality (34) can be

rewritten as follows:

M0 = ξ(q0, ω0) = min
q

max
ω

ξ(q, ω) <
K

β
. (40)

When q = 0, the ξ-function can be expressed as:

ξ(0, ω) =

√
U2 + V 2

√

(1 + U)2 + V 2
= |Sc(e

jωh)|, (41)

where Sc(z) is the complementary sensitivity function for the
discrete-time system.

It is evident that the following curve on the complex plane,

ξ(0, ω) = M, (M : const.) (42)

corresponds to an M -circle in the Hall diagram. In this study,
since an arbitrary non-negative number q is considered, the ξ-
function that corresponds to (41) and (42) is given as follows:

U2 + V 2

−qΩV +
√

q2Ω2V 2 + (U2 + V 2){(1 + U)2 + V 2}
= M.

(43)
From this expression, the following quadratic equation can be
obtained:

(M2 − 1)U2 + 2M2U + (M2 − 1)V 2 + M2 − 2MqΩV = 0.
(44)

When M > 1, the following is obtained from (44).
(

U +
M2

M2 − 1

)2

+ (V − λ)2 =
M2

(M2 − 1)2
+ λ2,

λ = qΩM/(M2 − 1) ≥ 0. (45)

Although the distorted frequency Ω is a function of ω, the term
qΩ = cq ≥ 0 is assumed to be a constant parameter in this
paper. Thus, it can been seen that (45) represents off-axis circles
with their center at (−M2/(M2 − 1), λ) and with radius of
√

M2/(M2 − 1) + λ2.

Figure 7 shows an example of the modified Hall diagram and
Nyquist curves of a control system with time delay. Here, N1 is
a vector locus that contacts with an M -circle at the peak value
(Mp = ξ(0, ωp) = 1.4). On the other hand, N2 is a vector locus
that contacts with a circle C on the real axis, where all the M -
circles cross the real axis. The latter case corresponds to the
discrete-time system in which Aizerman’s conjecture is valid
(Okuyama et al. [1998]). At the continuous saddle point where
is also the phase-crossover point Pc, the following equation is
satisfied:

(

∂η(q, ω)

∂q

)

q=q0,ω=ω0

= 0. (46)

Evidently, the phase margin pM is obtained from the gain-
crossover point Gc.
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Fig. 7. An example of M-circles and vector loci.
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Fig. 8. Step responses for Example 1.
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(ii)

Fig. 9. Phase traces for Example 1.

∆e

e

7. NUMERICAL EXAMPLES

Example 1. Consider the following continuous plant:

P (s) =
K1

(s + 0.1)(s + 0.2)(s + 0.5)
, (47)

where the gain constant is K1 = 0.01 and the sampling period
is h = 1.0. The discretized nonlinear characteristic considered
here (discretized sigmoid, i.e. arc tangent) is as shown in Fig.
2. The resolutions of the input and output sequences of Nd(·)
are chosen as γ1 = 2.0 and γ2 = 1.0. When the nominal gain
K = 1.0 and the threshold ε = 2.0 are considered, the sectorial
area of the stepwise nonlinear characteristic for ε ≤ |e| can
be determined as [0.5, 1.5]. In this example, the resolutions
of model system KPm(z) and feedback compensator F (z) are
defined as γc1 = γc2 = γ2/25 = 0.04.

Fig. 10. M-circles and vector loci for Example 1.

(i) (ii)

As for the first case (i), the model system is chosen as follows:

KP̃m(δ) =
1

1 + 8.0δ + 8.0δ2
. (48)

And the feedback compensator is defined as:

F̃ (δ) =
1 + 8.0δ + 8.0δ2

1 + 8.0δ + δ2
. (49)

The step response of (i) is depicted in Fig. 8. and the phase trace
is as shown in Fig. 9. On the other hand, as for the second case
(ii), the model system is chosen as:

KP̃m(δ) =
1

1 + 8.0δ + 8.0δ2
z−4. (50)

Since the sampling period h = 1.0, the above (50) corresponds
to the model system with time-delay Lm = 4.0. The feedback
compensator is the same as (49). In this case, the step response
of (ii) is well stabilized and designed as shown in Fig. 8.

When the model and compensator are considered in high reso-
lution, the equivalent controller can be written as

C̃(δ) =
1 + 8.0δ + 8.0δ2

8.0δ + δ2
. (51)

Therefore, the Nyquist plots and the off-axis M-circles of these
cases is as shown in Fig. 10. (Hereafter, the cut-off frequency is
chosen as ωc = 0.3.) The parameter tuning and designing of the
above model-reference control systems can be performed in this
diagram. In either case, since the sector parameter β becomes
not less than K = 1.0 from (22), it should be considered
β0 = 1.0. (i.e., the allowable sector is regarded as [0.0, 2.0].)
Thus, the robust stabilty of the control system is guaranteed.

Example 2. Consider the following continuous plant with time
delay:

P (s) =
K2

(s + 0.1)(s + 0.2)(s + 0.5)
e−Ls, (52)

where K2 = 0.01 and L = 4.0. The resolutions of the model
and compensator are the same as in Example 1. In addition,
as for the first case (i), the model system and the feedback
compensator are the same as (48) and (49), respectively. The
step response of (i) is depicted in Fig. 11. On the other hand,
as for the second case (ii), the model system and the feedback
compensator are the same as (50) and (49). Also in this case,
the step response is well stabilized as shown in Fig. 11. When
the model system and the feedback compensator are in high
resolution, the secor parameter becomes β0 = 0.78 (i.e., the
allowable sector is determined as [0.22, 1.78]). Figure 12 shows
the Nyquist plots and the off-axis M-circles of these cases. The
parameter tuning and designing of the above model-reference
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Fig. 11. Step responses for Example 2.

(i)
(ii)

Fig. 12. M-circles and vector loci for Example 2.

(i) (ii)

control systems can be performed in this diagram. Thus, the
robust stability of the control system is satisfied in either case
of the above.

Example 3. Consider the following continuous plant with time
delay:

P (s) =
K3(s + 0.3)(−s + 0.5)

(s + 0.1)(s + 0.2)(s + 0.5)
e−Ls, (53)

where K3 = 0.05 and L = 5.0. This is an example of
non-minimum phase plants. The resolutions of the model and
compensator are the same as in Example 1. As for the first case
(i), the model system and the feedback compensator are the
same as (48) and (49). The step response of (i) is depicted in
Fig. 13. On the other hand, for the second case (ii), the model
system and the feedback compensator are the same as (50) and
(49). (Here, the time delay of the model system is chosen as
Lm = 0.5.) Also in this case, the step response of (ii) is well
stabilized as shown in Fig. 13. This is a counter example of
Aizerman’s conjecture.

8. CONCLUSION

This paper has described a designing problem of discrete-
time and discrete-value (discretized) control systems based on
a model reference structure. The robust stability of that type
of nonlinear control systems was examined in a frequency
domain. The model reference feedback using a second-order
continuous-value (linear) system was equivalently transformed
into a traditional PID control. Based on the model reference
structure, the robust stabilization and design of continuous
plants could be achieved. The result of numerical examples
show good performances and step responses. In general, the

Fig. 13. Step responses for Example 3.

(i)
(ii)

design method will be applied to digital and discrete control
systems.
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