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Abstract— This paper describes a robust stabilization prob-
lem of discrete model-reference control systems on integer grid
coordinates. Currently, all feedback control systems are realized
using discretized signals. However, the analysis and design of
discrete-time and discrete-value (point-to-point) control systems
has not been established. In this paper, the robust stability
of that type of discretized control systems is examined in a
frequency domain. A robust stability condition for such discrete
control systems with multi-nonlinearity is derived by applying
Ostrowski’s M-matrix. Using these results, the stabilization
and design of model-reference control systems is performed.
It can be seen that the model-reference control using a second-
order lag system is equivalently transformed into a traditional
PID control scheme. Numerical examples for discrete model-
reference control are provided to verify the design method.

I. INTRODUCTION

At present, all feedback control systems are realized using

discretized (discrete-time and discrete-value) signals. How-

ever, the analysis and design of discretized (point-to-point)

control systems has not been entirely elucidated. An attempt

to elucidate the quantized control systems was presented first

in a paper [1]. Since then, the problem of mitigating the

quantization effects in quantized control systems has been

studied [2], [3], [4], [5]. However, few results have been

obtained for the analysis and design of that type of nonlinear

discrete-time control systems [6], [7].

In our previous papers [8], [9], [10], the robust stabi-

lization of nonlinear discrete-time and discrete-value (dis-

cretized) control systems was examined in a frequency

domain. In the study, a traditional (discrete-time) PID control

scheme was used in the controller design. Moreover, based

on model-reference feedback structure a design method of

such discretized control systems was presented in [11]. In

the study, it was shown that the model-reference feedback

using a second-order lag system is equivalently transformed

into a PID control scheme. In this paper, the robust stability

of that type of discretized control systems is examined in

a frequency domain. A robust stability condition for such

discrete control systems with multi-nonlinearity is derived by

applying Ostrowski’s M-matrix [12]. Using these results, the

stabilization and design of model-reference control systems

is performed.

II. DISCRETIZED MODEL REFERENCE FEEDBACK

Model-reference feedback structure for a robust control

system was once proposed by the authors [13]. A discrete-

time version of the model reference feedback was presented
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Fig. 1. Discretized model-reference feedback control system.

in [14]. In this paper, a discretized model reference control

system as shown in Fig. 1 is examined. Here, P (s) is a

continuous-time and continuous-value plant, and P (z) is the

z-transform of P (s) together with the zero-order hold H. In

addition, Np(·), Dp1 and Dp2 are a nonlinear continuous

element and the input/output discretizing units which are

performed in A/D (D/A) conversion. Moreover, Pm(z) is the

plant model and F (z) is the feedback compensator. Dm(·)
and Df (·) are the nonlinear discretized elements of the model

and the compensator, respectively.

In the figure, each symbol e1, v1, · · · indicates the

sequence e1(k), v1(k), · · · (k = 0, 1, 2, · · · ) in discrete time,

but for continuous value. On the other hand, each symbol e†1,

v†
1, · · · indicates a discrete value that can be assigned to an

integer number, e.g.,
e†1 ∈ {· · · ,−2γ,−γ, 0, γ, 2γ, · · · },
v†
1 ∈ {· · · ,−2γ,−γ, 0, γ, 2γ, · · · }, (1)

where γ is the resolution of each variable. An example of the

discretization characteristics Dp1, Dp2, and the discretized

characteristic v†1 = Dp(e1) is depicted as shown in Fig. 2.

Here, without loss of generality, the resolutions in Dp1 and

Dp2 are assumed to be γ = 1.0, and the continous nonlinear

curve Np(·) is chosen as a sigmoid function.

III. MODEL SYSTEM AND BILINEAR TRANSFORMATION

In this study, the model of plant, Pm(z), is assumed to be

a second-order lag system, e.g.,

Pm(z) = P̂m(δ) =
1

1 + C1δ + C2δ2
, (2)

where δ is the following bilinear transformation:

δ =
2

h
· z − 1

z + 1
(h : sampling period). (3)

Here, C1 and C2 are the design parameters of the model

system.
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Fig. 2. Discretization for a nonlinear characteristic.
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†
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− e1: a sawtooth signal).

The z-transform expression of (2) is given by

Pm(z) =
h2(z + 1)2

h2(z + 1)2 + 2C1h(z + 1)(z − 1) + 4C2(z − 1)2
.

(4)

Obviously, δ approaches Laplace transform variable s, when

the sampling period is h → 0.

The operator δ has the following properties:

1) Since δ−1 =
h

2
· 1 + z−1

1 − z−1
, the relationship between

the input and output sequences, x(k), y(k), (k =
0, 1, 2, · · · ) can be written as:

y(k) = y(k − 1) +
h

2
(x(k) + x(k − 1)). (5)

This transformation corresponds to a trapezoidal sum-

mation (integration).

2) On the other hand, with respect to operator δ, the

following relation is obtained:

y(k) = −y(k − 1) +
2

h
(x(k) − x(k − 1)). (6)

In the frequency domain, δ can be expressed by pure

imaginary number as follows:

δ(ejωh) = jΩ(ω) = j
2

h
tan

(

ωh

2

)

, j =
√
−1, (7)

where Ω is a distorted frequency of ω.

In this paper, hereafter, variables and transfer functions of

z will be expressed by δ based on

z =
1 + (1/2)hδ

1 − (1/2)hδ
.

IV. DISCRETIZED NONLINEAR CHARACTERISTICS AND

INEQUALITY CONDITIONS

The input/output discretization processes and the dis-

cretized nonlinear characteristics are illustrated as shown in

Fig. 2. The nonlinear characteristics can be partitioned as

follows:

v†
1 = Dp(e

†
1) = Ke†1 + g1(e

†
1), 0 < K < ∞, (8)

|w†
1| = |g1(e

†
1)| < ∞, for |e†1| < ε1, (9)

|w†
1| = |g1(e

†
1)| ≤ β1|e†1|, for |e†1| ≥ ε1. (10)

Since the input-side discretization is equivalently represented

as shown in Fig. 3, the input signal is considered at an

integer, e1 = e†1 (Here, w†
1 is not always an integer though

† is attached to the symbol.)

In these inequalities, when analyzing the robust stability

in a global sense, it is sufficient to consider the nonlinear

term (10), because the nonlinear term (9) can be treated

as a disturbance signal. In this study, since the nonlinear

characteristic (8) is assumed to exist in the first and the third

quadrant, the sector parameter β1 should be considered in

0 ≤ β1 ≤ K.
In regard to the model system, the discretized nonlinear

characteristic can be expressed as:

v†
2 = Dm(e†2) = Kme†2 + g2(e

†
2), 0 < Km < ∞,(11)

|w†
2| = |g2(e

†
2)| < ∞, for |e†2| < ε2, (12)

|w†
2| = |g2(e

†
2)| ≤ β2|e†2|, for |e†2| ≥ ε2, (13)

and 0 ≤ β2 ≤ Km. Moreover, in regard to the feedback

compensator, the following expression can be given:

v†
3 = Df (e†3) = Kfe†3 + g3(e

†
3), 0 < Kf < ∞,(14)

|w†
3| = |g3(e

†
3)| < ∞, for |e†3| < ε3, (15)

|w†
3| = |g3(e

†
3)| ≤ β3|e†3|, for |e†3| ≥ ε3, (16)

and 0 ≤ β3 ≤ Kf .
Therefore, the robust stability of discretized systems as

described above is analyzed based on the inner-product and

norm analysis in the ℓ2 space. With respect to (10), the

following new nonlinear function can be defined1:

fi(ei) := gi(ei) + βi · ei, i = 1, 2, 3. (17)

When considering the discretized output of the nonlinear

characteristic, w†
i = gi(e

†
i ), the following expression is

given:

fi(e
†
i (k)) = w†

i (k) + βi · e†i (k). (18)

From inequality (10), it can be seen that (18) belongs to the

first and third quadrants.

For the neutral points of e†i (k) and w†
i (k), the following

expression can be given from (18):

1

2
(fi(e

†
i (k)) + fi(e

†
i (k − 1))) = w†

i (k) + βi · e†i (k), (19)

1Hereafter, only i = 1 is considered.
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where

w†
i (k) =

w†
i (k) + w†

i (k − 1)

2
, e†i (k) =

e†i (k) + e†i (k − 1)

2
.

(20)

Then, the trapezoidal area of one-step transition on integer

grid coordinates, fi(e), is written as follows:

τi(k) :=
1

2
(fi(e

†(k)) + fi(e
†
i (k − 1)))∆e†i (k)

= (w†
i (k) + βie

†
i (k))∆e†i (k), (21)

Here, ∆e†i (k) is the backward difference of sequence e†i (k).

∆e†i (k) = e†i (k) − e†i (k − 1).

Since f(e†i (k)) belongs to the first and third quadrants, the

area of each trapezoid τi(k) is non-negative when ei(k)
increases (decreases) in the first (third) quadrant. On the

other hand, the trapezoidal area τi(k) is non-positive when

ei(k) decreases (increases) in the first (third) quadrant.

In our study, the following assumption is provided with

respect to the discretized responses on the integer grid

coordinates.

[Assumption] The absolute value of the backward difference

of sequence e(k) does not exceed γ, i.e.,

|∆ei(k)| = |ei(k) − ei(k − 1)| ≤ γ. (22)

If condition (22) is satisfied, ∆e†(k) is exactly ±γ or 0

because of the discretization. That is, the absolute value of

the backward difference can be given as

|∆e†i (k)| = |e†i (k) − e†i (k − 1)| = γ or 0. �

This assumption states that each point of the response traces

on adjacent points in the integer grid coordinates.

Consider the following sum of trapezoidal areas:

σi(p) =

p
∑

k=1

τi(k). (23)

If the above assumption is satisfied with respect to the

discretization of the control system, the sum of trapezoidal

areas, σ(p), becomes non-negative for any p. Since the

discretized output traces the same points on the stepwise

nonlinear characteristic, the sum of trapezoidal areas is

canceled when ei(k) (and e†i (k) decreases (increases) from

a certain point (e†i (k), fi(e
†
i (k))) in the first (third) quadrant.

(Here, without loss of generality, the response of discretized

point (e†i (k), fi(e
†
i (k))) is assumed to commence at the

origin.)

From equation (21), the sum of trapezoidal areas can be

expressed as follows:

σi(p) :=
1

2

p
∑

k=1

(fi(e
†
i (k)) + fi(e

†
i (k − 1)))∆e†i (k)

= 〈 w†
i (k) + βie

†
i (k),∆e†i (k) 〉p (24)

Here, 〈·, ·〉p denotes the inner product in the ℓ2 space,

〈 x(k), y(k) 〉p =

p
∑

k=1

x(k)y(k).

1 + qiδ g∗i (·)

βiqiδ

❵ ✲ ✲ ✲ ❢ ✲
✻

✲

e†i e∗†i w∗†
i w†

i

gi(e
†
i )

+

+

Fig. 4. Nonlinear subsystem (i = 1, 2, 3).

In order to derive the robust stability condition, the fol-

lowing new sequences are considered here:

e∗†i (k) = e†i (k) + qi ·
∆e†i (k)

h
, (25)

w∗†
i (k) = w†

i (k) − βiqi ·
∆e†i (k)

h
, (26)

where qi is a non-negative number. The relationship between

equations (25) and (26) is as shown in Fig. 4.

Based on these sequences, the following lemma is given

[15], [16]:

[Lemma] If the following inequality is satisfied with respect

to the inner product of the neutral points of (18) and the

backward difference:

〈 w†
i (k) + βie

†
i (k),∆e†i (k) 〉p ≥ 0, (27)

the following inequality can be obtained:

‖w∗†
i (k)‖2,p ≤ βi‖e∗†i (k)‖2,p ≤ βi‖e∗i (k)‖2,p (28)

for any qi ≥ 0 and p → ∞. Here, ‖ · ‖2,p denotes the

Euclidean norm, which can be defined by

‖x(k)‖2,p :=

(

p
∑

k=1

|x(k)|2
)1/2

.

(Proof) The following equation is obtained from (25) and

(26):

β2
i ‖e∗†i (k)‖2

2,p − ‖w∗†
i (k)‖2

2,p

= β2
i ‖e†i (k)‖2

2,p − ‖w†
i (k)‖2

2,p

+
2βiqi

h
· 〈w†

i (k) + βie
†
i (k),∆e†i (k)〉p.

From (10), (13), and (16), the following holds:

‖w†
i (k)‖2,p ≤ βi‖e†i (k)‖2,p. (29)

Thus, the following inequality can be obtained from (27)

‖w∗†
i (k)‖2,p ≤ βi‖e∗†i (k)‖2,p. (30)

Since ‖e†i (k)‖2,p ≤ ‖ei(k)‖2,p for p → ∞, the following

inequality holds in the frequency domain based on Parseval’s

formula2:

‖e∗†i (δ)‖2 = |1 + qiδ| · ‖e†i (δ)‖2

≤ |1 + qiδ| · ‖ei(δ)‖2 = ‖e∗i (δ)‖2.

Then, ‖e∗†i (k)‖2,p ≤ ‖e∗i (k)‖2,p, and thus the right-side of

inequality (28) is satisfied. �

2Hereafter, δ is considered jΩ(ω) as shown in (7)
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V. VECTOR-MATRIX EXPRESSION FOR

MODEL-REFERENCE CONTROL

The model-reference control system as shown in Fig. 1 is

given by the following vector-matrix expression:




e1(δ)
e2(δ)
e3(δ)



 =





1
0
0



 r(δ)+





−P (δ) 0 0
0 Pm(δ) 0
0 0 F (δ)









u1(δ)
u2(δ)
u3(δ)



 ,

where control inputs u1, u2, and u3 are given by




u1(δ)
u2(δ)
u3(δ)



 =





u2(δ)

v†
3(δ)

v†
1(δ) + v†

2(δ)



 +





d′(δ)
r′(δ)

0



 .

As shown in Fig. 4, the nonlinear parts (point-to-point

characteristics) of the system can be written as follows3:






v†
1

v†
2

v†
3






=







Γ1(δ) 0 0

0 Γ2(δ) 0

0 0 Γ3(δ)













e†1

e†2

e†3






+







w∗†
1

w∗†
2

w∗†
3






,

where Γ1(δ) = K + β1q1δ, Γ2(δ) = Km + β2q2δ, Γ3(δ) =
Kf + β3q3δ.

If exogenous inputs are r′ = d′ = 0, u1 is equal to u2.

Moreover, since e†i = ei − di (i = 1, 2, 3), the following
closed-loop system equation can be given:





e
†
1

e
†
2

e
†
3



 =





d1 + r
d2

d3



 +





−P 0
Pm 0
0 F





[

u1

u3

]

=





d1 + r
d2

d3



 +





−P 0
Pm 0
0 F





[

0 0 Γ3

Γ1 Γ2 0

]





e
†
1

e
†
2

e
†
3





+





−P 0
Pm 0
0 F





[

0 0 1
1 1 0

]





w
∗†
1

w
∗†
2

w
∗†
3



 ,

where di (|di| ≤ γ) are discretized/quantized errors.
As for the neutral points defined in (20), the following

expression can be given:




1 0 Γ3P
0 1 −Γ3Pm

−Γ1F −Γ2F 1









e
†
1

e
†
2

e
†
3





=







d1 + r

d2

d3











0 0 −P
0 0 Pm

F F 0









w
∗†
1

w
∗†
2

w
∗†
3



 .

Inverse matrix of the left side of the equation is written as
follows:





1 0 Γ3P
0 1 −Γ3Pm

−Γ1F −Γ2F 1





−1

=
1

1 + (Γ1P − Γ2Pm)Γ3F

·





1 − Γ2Γ3PmF −Γ2Γ3PF −Γ3P
Γ1Γ3PmF 1 + Γ1Γ3PF Γ3Pm

Γ1F Γ2F 1





=





Ψ11 Ψ12 Ψ13

Ψ21 Ψ22 Ψ23

Ψ31 Ψ32 Ψ33



 . (31)

3Hereafter, no confusion is possible, e.g., e1(δ) and P (δ) will be
abbreviated to simply e1 and P .

Hereafter, in order to simplify the equation, the following
symbols will be used:

Λi(δ) = 1 + qiδ, i = 1, 2, 3. (32)

Thus,




e
∗†
1

(δ)

e
∗†
2

(δ)

e
∗†
3

(δ)



 =





Λ1(δ) 0 0
0 Λ2(δ) 0
0 0 Λ3(δ)









e
†
1
(δ)

e
†
2
(δ)

e
†
3
(δ)



 . (33)

Hence, the vector-matrix expression of the control system
is written by functions of δ as follows:









e
∗†
1

e
∗†
2

e
∗†
3









=





Λ1 0 0
0 Λ2 0
0 0 Λ3











Ψ11 Ψ12 Ψ13

Ψ21 Ψ22 Ψ23

Ψ31 Ψ32 Ψ33











d1 + r

d2

d3





+





Λ1 0 0
0 Λ2 0
0 0 Λ3











Ψ11 Ψ12 Ψ13

Ψ21 Ψ22 Ψ23

Ψ31 Ψ32 Ψ33











0 0 −P
0 0 Pm

F F 0











w
∗†
1

w
∗†
2

w
∗†
3







=







Λ1Ψ11 Λ1Ψ12 Λ1Ψ13

Λ2Ψ21 Λ2Ψ22 Λ2Ψ23

Λ3Ψ31 Λ3Ψ32 Λ3Ψ33











d1 + r

d2

d3





+







Λ1Ψ13F Λ1Ψ13F −Λ1(Ψ11P − Ψ12Pm)

Λ2Ψ23F Λ2Ψ23F −Λ2(Ψ21P − Ψ22Pm)

Λ3Ψ33F Λ3Ψ33F −Λ3(Ψ31P − Ψ32Pm)















w
∗†
1

w
∗†
2

w
∗†
3









.

In regard to to each norm of the equation, the following
inequality is obtained:









‖e∗†
1
‖2

‖e∗†
2
‖2

‖e∗†
3
‖2









≦







|Λ1Ψ11| |Λ1Ψ12| |Λ1Ψ13|

|Λ2Ψ21| |Λ2Ψ22| |Λ2Ψ23|

|Λ3Ψ31| |Λ3Ψ32| |Λ3Ψ33|













‖d1‖2 + ‖r‖2

‖d2‖2

‖d3‖2













|Λ1Ψ13F | |Λ1Ψ13F | |Λ1(Ψ11P − Ψ12Pm)|

|Λ2Ψ23F | |Λ2Ψ23F | |Λ2(Ψ21P − Ψ22Pm)|

|Λ3Ψ33F | |Λ3Ψ33F | |Λ3(Ψ31P − Ψ32Pm)|















‖w∗†
1
‖2

‖w∗†
2
‖2

‖w∗†
3
‖2









.

(34)

Here, symbol ≦ denotes a set of inequalities for each

element.

VI. ROBUST STABILITY CONDITION FOR

MULTI-NONLINEARITY SYSTEMS

By using the result of Lemma, the following inequality is
derived:







1 − β1|Λ1Ψ13F | −β2|Λ1Ψ13F | −β3|Λ1(Ψ11P − Ψ12Pm)|

−β1|Λ2Ψ23F | 1 − β2|Λ2Ψ23F | −β3|Λ2(Ψ21P − Ψ22Pm)|

−β1|Λ3Ψ33F | −β2|Λ3Ψ33F | 1 − β3|Λ3(Ψ31P − Ψ32Pm)|







·









‖e∗†
1
‖2

‖e∗†
2
‖2

‖e∗†
3
‖2









≦







|Λ1Ψ11| |Λ1Ψ12| |Λ1Ψ13|

|Λ2Ψ21| |Λ2Ψ22| |Λ2Ψ23|

|Λ3Ψ31| |Λ3Ψ32| |Λ3Ψ33|













‖d1‖2 + ‖r‖2

‖d2‖2

‖d3‖2






.

(35)

When the matrix of the left side of the above inequality

was written by:

A =





a11 a12 a13

a21 a22 a23

a31 a32 a33



 , (36)

all non-diagonal elements are obviously non-positive. In

addition, if all diagonal elements are positive and if all
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principal minors of all order are positive, the above matrix

A is called an M-matrix [17].

[Theorem-1] If there exists a qi ≥ 0 in which matrix (36)

becomes an Ostrowski’s M-matrix, the discretized model-

reference control system with sector nonlinearities (10), (13),

and (16) is robust stable in an ℓ2 sense, when the linearized

system with nominal gains K, Km, and Kf is asymptotically

stable.

(Proof) By using (36), inequality (35) can be written as

follows:




a11 a12 a13

a21 a22 a23

a31 a32 a33









x1

x2

x3



 ≦





y1

y2

y3



 . (37)

Obviously, elements of these vectors in (37) are xi ≥ 0 and

yi ≥ 0. Moreover, with respect to elements of the matrix A,

aij ≤ 0 (i 
= j) can be recognized.

The above inequality can be rewritten as follows:






a
(1)
11 a

(1)
12 a

(1)
13

0 a
(2)
22 a

(2)
23

0 0 a
(3)
33













x
(1)
1

x
(1)
2

x
(1)
3






≦







y
(1)
1

y
(2)
2

y
(3)
3






, (38)

where

a
(1)
ij = aij , x

(1)
j = xj , y

(1)
i = yi (i, j = 1, 2, 3).

Furthermore,






















a
(2)
22 =

1

a
(1)
11

∣

∣

∣

∣

∣

a
(1)
11 a

(1)
12

a
(1)
21 a

(1)
22

∣

∣

∣

∣

∣

, a
(2)
23 =

1

a
(1)
11

∣

∣

∣

∣

∣

a
(1)
11 a

(1)
13

a
(1)
21 a

(1)
23

∣

∣

∣

∣

∣

,

a
(2)
32 =

1

a
(1)
11

∣

∣

∣

∣

∣

a
(1)
11 a

(1)
12

a
(1)
31 a

(1)
32

∣

∣

∣

∣

∣

, a
(2)
33 =

1

a
(1)
11

∣

∣

∣

∣

∣

a
(1)
11 a

(1)
13

a
(1)
31 a

(1)
33

∣

∣

∣

∣

∣

,

and

a
(3)
33 =

1

a
(2)
22

∣

∣

∣

∣

∣

a
(2)
22 a

(2)
23

a
(2)
32 a

(2)
33

∣

∣

∣

∣

∣

.

Therefore, the right side of (38) can be written as

y
(1)
1 = y1, y

(2)
2 = y

(1)
2 − a

(1)
21

a
(1)
11

y
(1)
1 , y

(3)
3 = y

(2)
3 − a

(2)
32

a
(2)
22

y
(2)
2

provided a
(1)
11 > 0 and a

(2)
22 > 0. It can be seen that

these values are non-negative and bounded if each norm of

exogenous inputs is bounded (i.e., ‖r‖2 < ∞, ‖dj‖2 < ∞,

(j = 1, 2, 3). In addition, if a
(3)
33 > 0 is satisfied, x

(1)
3 < ∞,

x
(1)
2 < ∞, and x

(1)
1 < ∞ are obtained in reverse order.

Here, it should be noted that the above conditions a
(1)
11 >

0, a
(2)
22 > 0, and a

(3)
33 > 0 are rewritten as follows:

a
(1)
11 = ∆1 = a11 > 0

a
(2)
22 =

∆2

∆1
=

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

/a11 > 0

a
(3)
33 =

∆3

∆2
=

∣

∣

∣

∣

∣

∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣

∣

∣

∣

∣

∣

/

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

> 0.

The conditions say that all principal minors of matrix A are

positive. That is, it means that the matrix becomes M-matrix.

(The derivation of the result in general form is written in

Appendix.)

Thus, it can be proven that

‖e∗i ‖ < ∞ and ‖ei‖ < ∞, i = 1, 2, 3,

when the nomianl control system with gains K, Km, and

Kf . The proof of Theorem-1 based on the concept of

bounded-inputs and bounded-outputs (BIBO) stability of

model-reference control systems is completed. �

VII. RELATION TO PID CONTROL

When the model and the feedback compensator are in

higher resolution, in other word, β2 → 0 and β3 → 0, the

model-reference control sytem can be transformed equiva-

lently as shown in Fig. 5. Here, the equivalent controller and

the pre-filter are given as

C(δ) =
KfF (δ)

1 − KmKfPm(δ)F (δ)
, (39)

D(δ) =
1

KfF (δ)
. (40)

In the figure, g1(·) can be replaced with the nonlinear

subsytem as shown in Fig. 4. Therefore, the loop transfer

function from w∗
1 to e∗1 is given by

H(β1, q1, δ) =
(1 + q1δ)P (δ)C(δ)

1 + (K + β1q1δ)P (δ)C(δ)
. (41)

Thus, the robust stability condition of the model-reference

control will be rewritten as follows.

[Theorem-2] With respect to an arbitrary q1 ≥ 0, the

following inequality should be satisfied:
∣

∣

∣

∣

(1 + q1δ)P (δ)C(δ)

1 + (K + β1q1δ)P (δ)C(δ)

∣

∣

∣

∣

<
1

β1
. (42)

Arranging to an explicit form, inequality (42) will be equiv-

alent to the theorem in the previous paper [11].

(Proof) When β2 = β3 = 0 are assumed, the robust stability

condition should be written from Theorem-1 as follows:

∆1 = a11 = 1 − β1|Λ1Ψ13F | > 0. (43)

From (31) and (32), inequality (43) can be expressed as

1 − β1

∣

∣

∣

∣

−(1 + q1δ)Γ3PF

1 + (Γ1P − Γ2Pm)Γ3F

∣

∣

∣

∣

> 0. (44)

Since Γ1 = K +β1q1δ, Γ2 = Km, and Γ3 = Kf , inequality

(44) is rewritten as follows:

1 − β1

∣

∣

∣

∣

(1 + q1δ)P (δ)KfF (δ)

1 + [(K + β1q1δ)P (δ) − KmPm(δ)]KfF (δ)

∣

∣

∣

∣

> 0.

(45)

The above inequality is equivalent to (42). �

As was descibed in section 3, when the model is assumed

to be a second-order lag system, e.g.,

KmPm(δ) =
Km

1 + C1δ + C2δ2
, (46)
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K

g1(·)

P (δ) C(δ) D(δ)
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❵✲

✻

✲

✲

❄

✻

❄

✲ ✛

✛ ✛✛ ✛✛ ✛

✻

r d′′

w†
1

v†
1

e1

y u1

u2

r′

+

+ ++

+

−

+

+

+

+

d′

Dp(·)

Fig. 5. Equivalent feedback control system.

the feedback compensator KfF (δ) is defined in this study

as follows:

KfF (δ) =
1 + C1δ + C2δ

2

Km(1 + c1δ + c2δ2)
, (47)

where Km will be substituted by 1/Kf .

In these cases, the equivalent controller and the pre-filter

are given by

C(δ) =
1 + C1δ + C2δ

2

Km(c1δ + c2δ2)
,

D(δ) =
Km(1 + c1δ + c2δ

2)

1 + C1δ + C2δ2
.

Thus, the robust stability condition (45) can be rewritten as:
∣

∣

∣

∣

(1 + q1δ)P (δ)(1 + C1δ + C2δ
2)

Km(c1δ + c2δ2) + (K + β1q1δ)P (δ)(1 + C1δ + C2δ2)

∣

∣

∣

∣

<
1

β1

.

(48)

When c2 ≪ c1, the controller is approximately written as

C(δ) =
1

κ
δ−1 +

C1

κ
+

C2

κ
δ, (49)

where κ = Kmc1. Obviously, (49) is a three-term controller

based on the bilinear transformation expression, which cor-

responds to PID control for continuous-time systems.

When the model system is considered with time-delay,

KmPm(δ) =
Km

1 + C1δ + C2δ2
· e−Lms,

the controller C(δ) is written as

C(δ) =
1 + C1δ + C2δ

2

Km(1 + c1δ + c2δ2 − z−dm)
, (50)

where dm is a time-delay that is written as dm = Lm/h.

VIII. NUMERICAL EXAMPLES

[Example-1] Consider the following continuous plant:

P (s) =
K1

(s + 0.1)(s + 0.2)(s + 0.5)
, (51)

where the gain constant is K1 = 0.01. The sampling period

and the resolution value are assumed to be h = 1.0 and

γ = 1.0. That is, the responses of the control systems

trace on integer grid coordinates. The discretized nonlinear

characteristic (discretized sigmoid, i.e. arc tangent) is as

shown in Fig. 2.

Fig. 6. Step responses for Exmaple-1 ((i) C1 = 8.0, (ii) C1 = 5.0, (iii)
C1 = 2.0).

Fig. 7. Phase traces for Exmaple-1 ((i) C1 = 8.0, (ii) C1 = 5.0, (iii)
C1 = 2.0).

∆e

e

The input/output characteristic of the discretization pro-

cess is written by, for example, C-language expression as

follows:
e†1 = γ ∗ (double)(int)(e1/γ)

v1 = 0.4 ∗ e†1 + 3.0 ∗ atan(0.6 ∗ e†1) (52)

v†
1 = γ ∗ (double)(int)(v1/γ).

Here, (int) and (double) denote the conversion into an

integral number (a round-down discretization) and the re-

conversion into a double-precision real number, respectively.

When the nominal gain K = 1.0 and the threshold ε1 =
2.0 are considered, the sectorial area of the point-to-point

characteristic for ε1 ≤ |e1| ≤ 40.0 can be determined as

[0.5, 1.5].

In this example, the model system is chosen as:

Pm(δ) =
1

1 + C1δ + 8.0δ2
, Km = 1.0, (53)

and the feedback compensator is chosen as follows:

F (δ) =
1 + C1δ + 8.0δ2

1 + 8.0δ + δ2
Kf = 1.0. (54)

Here, C1 is an adjusting parameter.

As for three cases (C1 = 8.0, 5.0, 2.0), the step responses

are depicted as shown in Fig. 6, and the phase traces are

as shown in Fig. 7. In order to check the robust stability of

the discretized control system, |H| = |Λ1Ψ13F | and ∆1 =
1−β1|Λ1Ψ13F | in (43) for q1 = 10.0 ∼ 30.0 are calculated
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Fig. 8. Checking of robust stability margin for Exmaple-1 when β1 = 0.5,
β2 = β3 = 0, C1 = 5.0, and q1 = 10.0 ∼ 30.0.

ω

|H|

∆1

Fig. 9. Checking of robust stability margins for Exmaple-1 when β1 = 0.5,
β2 = 0.2, β3 = 0.1, and C1 = 8.0.

ω

∆1

∆2

∆3

as shown in Fig. 8. Figure 9 shows calculated results of the

following principal minors in (36) for q1 = 20.0, q2 = 6.0,

and q3 = 3.0:

∆1 = a11, ∆2 =

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

, ∆3 =

∣

∣

∣

∣

∣

∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣

∣

∣

∣

∣

∣

.

As is obvious from these figures, it can be seen that the sta-

bility margins for the discrete control systems are sufficiently

proven.

[Example-2] Consider the following model system with

time-delay Lm = 2.0:

Pm(δ) =
1

1 + C1δ + 8.0δ2
e−2s, Km = 1.0. (55)

The feedback compensator F (δ) is the same as (54). In

this example, the step response and the phase trace become

more sufficiently stabilized as shown in Figs. 10 and 11.

Figure 12 shows calculated results of the principal minors

in (36), ∆1, ∆2, and ∆3, for q1 = 20.0, q2 = 6.0, and

q3 = 3.0. Obviously, the stability margins for the discrete

control systems are sufficiently proven.

IX. CONCLUSION AND FUTURE REMARKS

This paper has described a stabilizing and designing prob-

lem of discretized model-reference feedback control systems.

In particular, a robust stability condition for control systems

Fig. 10. Step responses for Exmaple-2 ((i) C1 = 8.0, (ii) C1 = 5.0, (iii)
C1 = 2.0).

Fig. 11. Phase traces for Exmaple-2 ((i) C1 = 8.0, (ii) C1 = 5.0, (iii)
C1 = 2.0).

∆e

e

with multiple discretizations (nonlinearities) was presented

in the frequency domain by applying Ostrowski’s M-matrix

expression. As a consequence, it could be seen that the

discretized model-reference control systems are sufficiently

stabilized and well designed. The concept described in this

paper can be extended to the stabilization of multi-input

and multi-output discretized (nonlinear) control systems by

using the following general M-matrix representation. (See

Appendix.)

APPENDIX

As was described in the proof of Theorem-1, the follow-

ing matrix becomes important for the stability of feedback

Fig. 12. Checking of robust stability margin for Exmaple-2 when β1 = 0.5,
β2 = 0.2, β3 = 0.1, and C1 = 8.0.

ω

∆1

∆2

∆3
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systems with multiple nonlinearities:

A =











a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann











, (56)

where all non-diagonal elements are non-positive. In addi-

tion, if all diagonal elements are positive and if all principal

minors of all order are positive, the above matrix A is called

an M-matrix [17].

By using (56), system’s inequality can be written as

follows:










a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann





















x1

x2

...

xn











≦











y1

y2

...

yn











. (57)

Obviously, elements of these vectors in (37) are xi ≥ 0 and

yi ≥ 0. Moreover, with respect to elements of the matrix A,

aij ≤ 0 (i 
= j) can be recognized.

The above inequality can be rewritten as follows:













a
(1)
11 a

(1)
12 . . . a

(1)
1n

0 a
(2)
22 . . . a

(2)
2n

...
...

. . .
...

0 0 . . . a
(n)
nn

























x
(1)
1

x
(1)
2
...

x
(1)
n













≦













y
(1)
1

y
(2)
2
...

y
(n)
n













, (58)

where

a
(1)
ij = aij , x

(1)
j = xj , y

(1)
i = yi (i, j = 1, 2, · · · , n).

Furthermore,























































a
(2)
ij =

1

a
(1)
11

∣

∣

∣

∣

∣

a
(1)
11 a

(1)
1j

a
(1)
i1 a

(1)
ij

∣

∣

∣

∣

∣

a
(3)
ij =

1

a
(2)
22

∣

∣

∣

∣

∣

a
(2)
22 a

(2)
2j

a
(2)
i2 a

(2)
ij

∣

∣

∣

∣

∣

...

a
(n)
ij =

1

a
(n−1)
n−1 n−1

∣

∣

∣

∣

∣

a
(n−1)
n−1 n−1 a

(n−1)
n−1 j

a
(n−1)
i n−1 a

(n−1)
i j

∣

∣

∣

∣

∣

(i, j = 2, 3, · · · , n).

Therefore, the right side of (58) can be written as

y
(1)
1 = y1, y

(2)
2 = y

(1)
2 − a

(1)
21

a
(1)
11

y
(1)
1 , y

(3)
3 = y

(2)
3 − a

(2)
32

a
(2)
22

y
(2)
2 ,

· · · · · · , y(n)
n = y(n−1)

n − a
(n−1)
n n−1

a
(n−1)
n−1 n−1

y
(n−1)
n−1 ,

provided a
(1)
11 > 0, a

(2)
22 > 0, · · · , a

(n−1)
n−1 n−1 > 0. It can be

seen that these values are non-negative and bounded if each

vector yi is bounded (i.e., y
(1)
i < ∞, i = 1, 2, · · · , n). In

addition, if a
(n)
nn > 0 is satisfied, then x

(1)
n < ∞, x

(1)
n−1 <

∞, · · · , and x
(1)
1 < ∞ are obtained in reverse order.

Here, it should be noted that the above conditions a
(1)
11 >

0, a
(2)
22 > 0, a

(3)
33 > 0, · · · , a

(n)
nn are rewritten as follows:































































a
(1)
11 = ∆1 = a11 > 0

a
(2)
22 =

∆2

∆1
=

∣

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

∣

�a11 > 0

a
(3)
33 =

∆3

∆2
=

∣

∣

∣

∣

∣

∣

∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣

∣

∣

∣

∣

∣

∣

�

∣

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

∣

> 0

...

(59)

The conditions say that all principal minors of matrix A are

positive[18]. That is, it means that the matrix becomes M-

matrix.
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