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Abstract Nowadays automatic control systems in practice would be classified into two types,
that is, event-driven and clock-driven ones. However, the theory of event-driven control systems
has been different from the usual theory of (clock/time-driven, i.e., sampled-data) control systems.
In this paper, these two types of control systems are tried to discuss in a unified theory based on
the analysis of recurrent systems i.e., finite/infinite series expansion. Some numerical (asymptotic)
examples are shown to illustrate the facts. The relationship between continuous and discretized
control systems will be made clear from the results of this monograph.
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1 Introduction

Nowadays control systems in practice is said to be
classified into two types, that is, event-driven and
clock-driven ones. However, the theory of event-
driven control systems has been different from the
usual theory of (clock/time-driven, i.e., sampled-
data) control systems (so-called discrete-time control
theory) [1, 2, 3, 4]. In this paper, these two types of
control systems are tried to discuss in a unified the-
ory based on the analysis of recurrent systems i.e., fi-
nite/infinite series expansion. These thoughts will be
presented together with some numerical (asymptotic)
examples.

2 Discrete Mathematical Models

In general, event-driven and clock-driven discrete
dynamic systems can be written as the following re-
current processes

x(th+1) = f(x(th),e(th)) (1)

h ∈ N := {0, 1, 2, . . . 1, N},

where x(·), e(·), and f(·, ·) are states, event-signals,
and a transition function, respectively.

In this paper, each variable is considered as

x(th) ∈ Z
n
γ , e(th) ∈ Z

m
γ ,f : Z

n
γ × Z

m
γ → Z

n
γ ,

where

Zγ := {−Nγ · · · ,−2γ, γ, 0, γ, 2γ, · · ·Nγ}

and the sequence of events e(th) is considered simply

t0, t1, · · · , tN ⇔ e(t0),e(t1), · · · ,e(tN ).

Fig. 1: Attenuating responces for a recurrent dynamic
system (γ = 0.1, 0.5, 1.0, 2.0).

Fig. 2: Divergent responces for a recurrent dynamic
system (γ = 0.2, 0.55, 0.6).

Of course, Z1 = Z can be defined a finite set of in-
tegers (or simply natural numbers N). Here, N < ∞
and γ is the resolution of each variable1).

The states and events may be non-numerical (qual-
itative) situations in practice. However, they can be
considered as ordered sets, and thus the ordered sets

1)Our way of thinking is that the quantity (things) in this
world is finite numbers (or zeros, i.e., empty sets). The concept
of infinite large and small may be an illusion in the mathemat-
ics.

第 64 回自動制御連合講演会（2021 年 11 月 13 日～ 14 日，オンライン開催）

 263

1B2-5



will be replaced by some quantized/integral numbers.
As a result, the concept of lattice theory can be ap-
plied to the analysis of qualitative dynamic systems.
The multi-dimensional lattice coordinates will be pre-
sented in section 5.

When assuming T = tk+1 − tk to be constant in re-
gard to the above expressions, (1) becomes a sampled-
data, (i.e., clock-driven/discrete-time) system. More-
over, when the clossing terms of (1) are not consid-
ered, the expression of systems can be written as

x(tk+1) = Ax(tk). (2)

Here, although A is a matrix expression, it should not
be restricted in ‘linear algebra’ where additive opera-
tons are allowed.

When using a ‘continuous-like’ expression, it can be
given as follows:

x(tk+1) = (I + Adt)x(tk). (3)

Here, we can consider dt = tk+1 − tk and dx =
x(tk+1) − x(tk)2).

In the following, an elementary mathematics based
on the expressions of infinie series will be presented.

3 Infinite Series Expressions

When considering a simple recurrent dynamic sys-
tem, i.e.,

x(tk+1) = (1 + ∆)x(tk), (4)

we obtain the following infinite series:

x(tn) = (1 + ∆)nx(t0)

=
(

1 + n∆ +
n(n − 1)

2!
∆2 + · · ·

)
x(t0). (5)

3.1 Attenuated Responses

In the case of an attenuated response, i.e., ∆ =
−σdt (σ > 0),

x(tn) = (1 − σdt)nx(t0)

=
(

1 − nσdt +
n(n − 1)

2!
σ2dt2 + · · ·

)
x(t0) (6)

Obviously, when considering n → ∞ (dt → 0), the
series part becomes

exp(−σt) = 1 − σt +
σ2t2

2!
− σ3t3

3!
+ · · · ,

where t = ndt.
Of course, when ∆ = σdt > 0, divergent responses

will be obtained as shown Fig. 2.
2)In this paper, these values are not necessarily ‘small’.

3.2 Periodic Responces

Next, consider the following recurrent system,[
x1(tk+1)
x2(tk+1)

]
=

([
1 0
0 1

]
+

[
0 −ωdt

ωdt 0

]) [
x1(tk)
x2(tk)

]
,

(7)
where ω = 2πf (f : frequency).

We obtain the following infinite series expressions
when x2(t0) = 0:

⎧⎪⎪⎨
⎪⎪⎩

x1(tn) =

(
1 − n(n − 1)

2!
ω2dt2 + · · ·

)
x1(t0)

x2(tn) =

(
nωdt − n(n − 1)(n − 2)

3!
ω3dt3 + · · ·

)
x1(t0).

(8)
Thus, when n → ∞, the infinite series becomes,⎧⎪⎨

⎪⎩
cos ωt = 1 − ω2t2

2!
+

ω4t4

4!
− · · ·

sin ωt = ωt − ω3t3

3!
+

ω5t5

5!
− · · · .

3.3 Damped Oscillations

Consider the following recurrent system,[
x1(tk+1)
x2(tk+1)

]
=

([
1 0
0 1

]
+

[
−σdt −ωdt

ωdt −σdt

]) [
x1(tk)
x2(tk)

]
,

(9)
where σ > 0 and ω = 2πf > 0. We obtain the follow-
ing infinite series when x2(t0) = 0:

The above can be written as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(tn) =

(
1 − nσdt +

n(n − 1)

2!
σdt2 + ·

)
(

1 − n(n − 1)

2!
ω2dt2 + · · ·

)
x1(t0)

x2(tn) =

(
1 − nσdt +

n(n − 1)

2!
σ2dt2 + ·

)
(

nωdt − n(n − 1)(n − 2)

3!
ω3dt3 + · · ·

)
x1(t0).

(10)

Thus, when n → ∞, from the infinite series becomes,{
x1(t) = exp(−σt) cos ωt · x1(t0)

x2(t) = exp(−σt) sin ωt · x1(t0).

As describe above, dynamic systems can be anna-
lyzed base on the finite/infinite series expressions.

4 Quantization and State Transitions

In this section, the following discretization (in other
words, quantization) process is dealt with:

x† = γ ∗ (double)(int)(x/γ) (11)
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using a C-language expression. Here, (int) and (dou-
ble) denote the conversion into an integral number (a
round-down discretization) and the reconversion into
a double-precision real number, respectively. Baed on
the above operation (11), a discretized signal x† with
resolution γ will be obtained.

When assuming that a set of double-precision num-
bers (on a PC) is Zδ, discretized numbers are given
as:

x† ∈ Zγ ⊂ Zδ

Therefore, (11) can be written in the mathematical
form as follows:

x†

γ
= Q

(
x

γ

)
, (12)

where x ∈ Zδ, x† ∈ Zγ , and Q : Zδ → Z based on the
round-down operation, the following relation will be
valid:

x†

γ
= Q

(
x† + dx

γ

)
.

Thus, when 0 < dx < γ, the above x† is obtained.

On the other hand, when dx < 0, some step de-
creasing will be obtained in order to the round-down
operation.

4.1 Attenuation Process

Consider the following recurrent discretized pro-
cess:

x(th+1) = (1 − σdt)x†(th). (13)

Here, based on (12)

x†(th) = γQ(x(th)/γ).

Figure 1 shows the calculation results of (13) when
σdt = 0.03 and γ = 0.1, 0.5, 1.0, 2.0. In this case, at
least one-step decreasing will be occured because of
−σdt < 0. When γ = 2.0, only five-step decreasing is
occured.

In this figure ‘blue’ line is a curve based on the
following recurrent equation.

x(th+1) = (1 − σdt)x†(th),

x†(th) ∈ Zγ , σdt = 0.01, γ = 0.02.

And ‘green line’ is a curve that is calculated in Zδ by
using exponential function.

x(t) = 10 exp(−3t) ∈ Zδ, t = ndt, dt = 0.01.

Fig. 3: Periodic responces for a recurrent dynamic
system-1 (γ = 1.0 and 3.0).

Fig. 4: Phase plane expression-1 (γ = 3.0).

On the other hand, Fig. 2 shows divergent re-
sponses when σdt = 0.06 and γ = 0.2, 0.55, 0.6, and
x(t0) = 9.6. In this figure, ‘blue’ and ‘green’ lines are
the same cases as shown in the previous example.

4.2 Periodic Processes

Next, consider periodic systems written by (7),i.e.,[
x1(th+1)
x2(th+1)

]
=

([
1 0
0 1

]
+

[
0 −ωdt

ωdt 0

]) [
x†

1(th)
x†

2(th)

]
,

(14)
where σ > 0, ω = 2πf > 0, and

x†
i (th) = γQ(xi(th)/γ), i = 1, 2.

Figure 3 shows the calculation results of (14) for
x2(th) when ωdt = 0.004π and γ = 1.0 and 3.0. Aso in
this figure, ‘blue’ and ‘green’ lines are the same cases
as shown in the previous example. Moreover, the
‘grey’ circles and lines denote x1(th) and the ‘light-
blue’ curve shows x1(th) for the ‘blue’ one.

A kind of phase plane trajectory for (x1, x2) is also
given in Fig. 4. In the extreme case where γ = 3.0, it
can be found that the response is constracted by only
24 states.

With respect to an extreme case in Fig. 5 (i.e.,
γ = 6.0), the response is constructed by only 8 states
as shown in Fig. 6.

 265



Fig. 5: Periodic responces for a recurrent system (γ =
2.0 and 6.0).

Fig. 6: Phase plane expression-2 (γ = 6.0).

4.3 Damping Oscillations

Consider the following recurrent system,[
x1(tk+1)
x2(tk+1)

]
=

([
1 0
0 1

]
+

[
−σdt −ωdt

ωdt −σdt

]) [
x†

1(tk)
x†

2(tk)

]
,

(15)
where σ > 0, ω = 2πf > 0, and

x†
i (th) = γQ(xi(th)/γ), i = 1, 2.

Figure 7 shows an example of damping oscillation for
step responce when ωdt = 0.04π, σdt = 0.023, and
γ = 2.0 and 3.0 for 9.0 − x1(th). (For reference, the
‘lightblue’ curve for x1(th) is drawn.)

Phase plane trajectories are given as shown in Fig.
8 for γ = 3.0 3).
4.4 Three Dimensional Cases

As for the above 1st and 2nd order systems, the
behavior of response is easily understood from those
figures, especially in Figs. 6 and 8. However, 3rd and
higer order systems cannot be easily treated in those
figures.

3)Phase plane trajectories are usually drawn right-turn.
However in this paper they are drawn left-turn because of the
unification to the 3D coordinates expression and the angle di-
rection.

Fig. 7: An example of damping oscillation for step
responces (γ = 2.0 and 3.0).

Fig. 8: Phase plane of damping case (γ = 3.0).

Here, consider the following 3rd order systems:

x(th+1) = (I + ∆)x†(th), (16)

∆ =

⎡
⎢⎣
−σdt −ωdt 0
ωdt −σdt 0
0 σ3dt −σ3dt

⎤
⎥⎦ , x†(th) =

⎡
⎢⎣

x†
1(th)

x†
2(th)

x†
3(th)

⎤
⎥⎦

where σ > 0, ω = 2πf > 0, and

x†
i (th) = γQ(xi(th)/γ), i = 1, 2, 3.

Figure 9 shows an example of damping oscillation
when ωdt = 0.04π, σdt = 0.311π, σ3dt = 0.04 and
γ = 3.0 and 1.5 for 9.0 − x1(th). (The ‘lightblue’ and
‘orange’ lines show x1(th) and x3(th), respectively.)
Phase space trajectories are given as shown in Fig.
10. Three dimensional (continuous) trajiectory may
be difficult to undestand in such a figure. However,
the discretized traces in Fig. 10 would be understood
easily.

5 Lattice Coordinates

As shown in Fig. 10, discrete responses can be con-
sidered on a lattice coordinates. Therefore, the con-
cept of lattice theory can be applied to the analysis of
discrete dynamic systems, However, the definition of
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Fig. 9: An example of 3rd order system for step re-
sponses (γ = 1.5 and 3.0).

Fig. 10: Phase space responses of a 3rd order system
(x1, x2, x3) (γ = 3.0).

lattices is fairly abstract expression as given below4).
Definition of Lattices. A lattice is an ordered
set L in which every pair of elements (and hence ev-
ery finite subset) has an infimum (meet, ∧) and a
supremum (join, ∨). Thus, a lattice is denoted by
(L;∧,∨), (L;∧,∨,≤) or (L;∧,∨,
) in the mathemat-
ics [5, 6, 7, 8].

Of course, the concept of lattice can be applied to
simple coordinates as shown in Fig. 11. That is, Z

2
γ ,

Z
3
γ , and moreover Z

n
γ can be considered as a lattce in

general. Here, the following is simply valid in Fig. 11:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(x1, x2, x3) � (x1 + γ, x2, x3)

(x1, x2, x3) � (x1, x2 + γ, x3)

(x1, x2, x3) � (x1, x2, x3 + γ),

(17)

where xi ∈ Zγ (i = 1, 2, 3) 5).
For example, in Fig. 6 the extreme response for

γ = 6.0 is given as:

(6, 0) → (6, 6) → (0, 6) → (−6, 6) → · · · .

4)The term ‘lattice’ in the mathematics is translated into
‘soku’ in Japanese. In English, the word ‘lattice’ usually means
a wood structure, On the other hand, the word ‘grid’ corre-
sponds to a metal structure

5)The symbol � means ‘adjacent’. These structutres can also
be drawn by using Hasse diagram [9, 10].

Fig. 11: Three dimensional lattice coordinates.

Obviously, the response is constructed by adjacent
trasrations.

On the other hand, in Fig. 8 the exreme response
for γ = 3.0 is given as:

(9, 0) → (6, 0) → (6, 3) → (3, 3) → (3, 6) → · · · .

Also in this case, the response is constructed by ad-
jacent transrations. In regard to a 3rd order system
shown in Fig. 10, the extreme response becomes:

(9, 0, 0) → (6, 0, 0) → (6, 3, 0) → (3, 3, 0) → (3, 6, 0)

→ (0, 6, 0) → (0, 6, 3) · · · .

In this example, the response is obtained by adjacent
transactions,

With respect to discrete event dynamic systems,
the difference between ‘place’ and ‘token’(value) may
be confused. This problem will be described below.

6 Logical Matrix Expressions

Based on the semi-tensor product (STP) and logical
matrix expressions, recurrent systems can be given as
follows[11, 12, 13]:

x(th+1) = F (δk
m ⊗ x(th) = F ·

⎡
⎢⎢⎢⎢⎣

x1(th)
x2(th)

...
xm(th)

⎤
⎥⎥⎥⎥⎦ , (18)

where x(·) ∈ Zγ
n, xj(·) ∈ Zγ

n, F = [P1 P2 · · · Pm],
Pk ∈ P ⊂ Z

n×n (k = 1, 2, · · · ,m), and P is a set of
(0, 1)-permutation matrix,

xj(th) =

⎧⎨
⎩x(th) when j = k

0 when j �= k.

However, there is no special meeaning in the opera-
tion. It expresses only state transitions. The opera-
tions can be written simply as

x(th+1) = P (e(th)) · x(th), (19)
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when considering event-driven control systems[13].
For example, the state transition in Fig. 10,

P (th) = δ8[ 8 1 2 3 4 5 6 7 ]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The relationship between the above logical matrix
and the usual state transition expression, e.g., (16)
will become to easy to understand, when introducing
a reverse-direction idea. That is, for example, the
value (‘token’) of place-1 is changed in order as x̂1(t0),
x̂2(t0), · · · , x̂p(t0)6). The processes are given below:

x(t0) → x(t1) → x(t2) · · · x(tp)
‖ ‖ ‖ ‖

place-1 place-2 place-3 · · · place-p
x̂1(t0) x̂2(t0) x̂3(t0) · · · x̂p(t0)

↓ ↓ ↓ ↓
x̂1(t1) = x̂2(t0) x̂2(t1) = x̂3(t0) x̂3(t1) = x̂4(t0) · · · x̂p(t1) = x̂1(t0)

...
...

...
...

x̂1(tp) = x̂2(tp−1) x̂2(tp) = x̂3(tp−1) x̂3(tp) = x̂4(tp−1) · · · x̂p(tp) = x̂1(tp−1)

when tp ≤ tN and x̂p+q(tN ) = x̂q(tN ) (i.e., periodic
systems)

Of course, each state transition is given as:
for example, in regard to an adjacent operation on
place-1 in Fig. 6,

⎡
⎢⎣

x1(t1)
x2(t1)
x3(t1)

⎤
⎥⎦ =

⎡
⎢⎣

x1(t0)
x2(t0)
x3(t0)

⎤
⎥⎦ +

⎡
⎢⎣

0 1 0
0 0 1
1 0 0

⎤
⎥⎦

⎡
⎢⎣

0
0
γ

⎤
⎥⎦

and for example, in regard to an operation on place-1
in Fig. 10,

⎡
⎢⎣

x1(t6)
x2(t6)
x3(t6)

⎤
⎥⎦ =

⎡
⎢⎣

x1(t5)
x2(t5)
x3(t5)

⎤
⎥⎦ +

⎡
⎢⎣

0 1 0
1 0 0
0 0 1

⎤
⎥⎦

⎡
⎢⎣

0
0
γ

⎤
⎥⎦ .

7 Conclusions

The theory of event-driven control systems has been
different from the usual theory of (clock/time-driven,

6)The numbers written in Figs. 6, 8, and 10 correspond to
these place-numbers.

i.e., sampled-data) control systems. In this paper,
these two types of control systems were tried to dis-
cuss in a unified theory based on the analysis of re-
current systems i.e., finite/infinite series expansion.

The analytical thoughts in this paper will be ap-
plied to ‘nonlinear’ dynamic systems based on ‘natu-
ral’ (i.e., recurrence expressions in the time domain)
modeling/identification techniques.
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