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Abstract: Nowadays there are many event-driven types of control systems, e.g., manufacturing systems, industrial and
welfare robots, networked control systems (popularly known as IoT), and so forth. In this paper, the security and stability
problems of discrete-event dynamic systems are studied based on semi-tensor product (STP) and Boolean networks con-
cept. The permutation and logical matrix expressions of such structural nonlinear systems are introduced. The relation to
Perron-Frobenius theory and irreducible M -matrix is also described. Simple numerical examples are shown to illustrate
recurrent dynamic systems.
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1. INTRODUCTION

At present, there are many event-driven types of con-
trol systems [1-3], e.g., manufacturing systems, industrial
and welfare robots, networked control systems [4, 5], and
so on. In this paper, the security and stability problems
of discrete-event dynamic systems (DEDSs) are studied
based on semi-tensor product (STP) and Boolean net-
works concept [6, 7]. In the analytical process, permu-
tation and logical matrix expressions of such structural
nonlinear systems will be introduced. The relation to
Perron-Frobenius theory and irreducible M -matrix will
be described. Although the theory of strucural map-
ping and graph expressions of DEDSs have been known,
e.g. [8, 9], we think that the quantitative evaluation for
the securities and stability of the systems may be diffi-
cult. Thus we will use permutation matrix and STP ex-
pressions in the systems analysis.

2. MATRIX EXPRESSION OF DEDSS

Finite-state and discrete-event dynamic systems can be
written as the following multistage processes 1:

x(th+1) = f(x(th),e(th)) (1)

h ∈ N := {0, 1, 2, . . . 1, N},
where x(·), e(·), and f(·, ·) are state variables, event
(control) signals, and a transition function, respectively.
In this paper, each variable is considered as

x(th) ∈ X ⊂ Z
n, e(th) ∈ E ⊂ Z

m, f : X ×E → X ,

where Z is a finite set of integers2,
Of course, the states and events may be non-numerical

(qualitative) situations in practice. However, they can be
considered as ordered sets, and thus the ordered sets will

† Yoshifumi Okuyama is the presenter of this paper.
1Although the equation is a clock-driven (time-driven) expression,
event-driven processes can also be expressed in this form.
2Hereafter, it will be considered as a set of natural numbers. When
considering only Z ⇒ D := {0, 1}, the proesss becomes a Boolean
(i.e., automata) network.
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Fig. 1 State transition graph for a DEDS with four places
and state-values.

be replaced by integer numbers. For example, when con-
sidering a DEDS as shown in Fig. 1 3 [10], the following
states and events can be defined:

X = {x1, x2, x3, x4}, E = {e1, e2, eφ},

where eφ means no action.
When the clossing terms of (1) are not considered

here4, DEDSs will be written by using a permutation ma-
trix [11-14] as

x(th+1) = P (e(tk)) · x(th), (2)

where P (e(th)) ∈ P . Here, P ⊂ Z
n×n is a set of

permutation matrices in which only one nonzero element
pij > 0 is permitted in the row and column elements
of P = (pij). As is obvious, the number of the positive
element pij in the matrixP is n. When considering pij =
1, those matrices are said to be (0,1)-permutation matrix.
Let σ = k1k2 · · · kn be a permutation of {1, 2, · · · , n}

[14]. P = [pij ] can be defined in regard to the j-th row

3Although this example is only a vending machine, it will correspond
to some industrial machine in practice.
4Not only algebraic operations but also logical operations, e.g., ∧, ∨,
and 1 + 1 = 1 are not considered here.
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as follows:

pij =

{
1, if j = ki,

0, otherwise.
(3)

In regard to a DEDS as shown in Fig. 1, a (circulant)
permutation matrix P is, for example, given below:

P (e(th)) =

⎡
⎢⎢⎣

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦ (4)

for σ = k1k2k3k4 = 4123. Note that it can also be
defined for the i-th column as:

pij =

{
1, if i = kj ,

0, otherwise.
(5)

Based on the above consideration, (2) can be expanded
as follows:

x(tN ) =

(
N−1∏
h=0

P (e(th))

)
x(t0). (6)

Here, the following is approved:

P (e(tN )) ∈ P ⇒
N−1∏
h=0

P (e(th)) ∈ P , (7)

and the converse holds.

3. SEMI-TENSOR PRODUCT

The STP approach becomes common, especially, in
Chinese researchers with regard to Boolean networks
(i.e., automata theory) [6, 7, 15]. In these literatures, the
definition of STP of matrices is given below.

[Definition] With respect toA ∈ Z
m×n andB ∈ Z

p×q

(1) The left STP

A � B = (A ⊗ Iα/n)(B ⊗ Iα/p), (8)

(2) The right STP

A � B = (Iα/n ⊗ A)(Iα/p ⊗ B) (9)

where5

α = lcm(n, p), Im : m × m identity matrix

⊗ : tensor product (Kronecker product).
When considering the left STP of F ∈ Z

n×mn and e ∈
Z

m×1, the following expression can be obtained:

F � e = (F ⊗ Iα/mn)(e ⊗ Iα/n). (10)

In this case, α = lcm(mn,m) = mn. Therefore, it can
be given as follows:

F � e = F (e ⊗ Im). (11)
5lcm(n, p) means a least common multiple of n and p.

By using the above expression, the mathematical
model of DEDSs (2) is written for any h-th event (control
signal) as:

x(th+1) = (F �e(th))�x(th) = (F ×δk
m)�x(th),

(12)

where

F =
[
F1 F2 · · · Fm

]
, Fk ∈ P ⊂ Z

n×n,

δk
m : k-th column of the identity matrix Im,

x(th) ∈ Z
n (1 ≤ k ≤ m).

Note that δk
m correspods to a basis vector in the matrix

theory.
Moreover, the following relation can be obtained:

F � δk
m = F (δk

m ⊗ Im) = Fk. (13)

Therefore, (12) can be written as follows:

x(th+1) = Fk � x(th) = Fk · x(th), (14)

where

Fk ∈ {F1,F2, · · · ,Fm}.
In this paper, the state x(th) will not be restricted within
D := {0, 1} as descrribed in Boolean networks.
On the other hand, (12) can also be written as:

x(th+1) = F � (e(th) � x(th)) = F (δk
m ⊗ x(th),

(1 ≤ k ≤ m), (15)

based on the associative law of STP. Thus, the following
expression is obtained:

x(th+1) = F (δk
m ⊗ x(th) = F ·

⎡
⎢⎢⎢⎣

x1(th)
x2(th)
...

xm(th)

⎤
⎥⎥⎥⎦ , (16)

where xj(·) ∈ Z
n, and

xj(th) =

{
x(th) when j = k

0 when j �= k.

4. LOGICAL MATRICES AND THEIR
OPERATIONS

The transition matrices Fk and F in (14) and (16) can
be expressed by the following logical matrix6:

Fk, F ∼ Ln = [δi1
n δi2

n · · · δimn
n ].

6Although the logical matrix is defined with repect to a column of the
identity matrix In as described in the literature[6, 14], we think that it
can also be defined by a row of In as given below:

Ln =

⎡
⎢⎢⎣

σj1
n

σj2
n

:

σjmn
n

⎤
⎥⎥⎦ , Ln = σn

⎡
⎢⎣

j1
j2
:

jmn

⎤
⎥⎦ , (jl ≤ n),

where
σl

n : l-th row of the identity matrix In.

The above corresponds to σ = 4123 in (4). This matrix means a tran-
sition ‘from’ a place. On the other hand, (17) will be a transition ‘to’ a
place.
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Fig. 2 Cycles of length n = 4.

Fig. 3 A reducible graph for n = 4.

It can also be written as

Ln = δn[i1 i2 · · · imn], (il ≤ n). (17)

In regard to a circulant system shown in (4), the following
expression can be obtained:

L4 = δ4

[
2 3 4 1

]
. (18)

As for fourth-order periodic systems as shown in Fig. 2
((n − 1)! directed graphs[26]), the following logical ma-
trices are obtained7 :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) : δ4[2 3 4 1]
(b) : δ4[2 4 1 3]
(c) : δ4[3 4 2 1]
(d) : δ4[4 1 2 3]
(e) : δ4[3 1 4 2]
(f) : δ4[4 3 1 2].

(19)

Of course, based on F in (16), the following 4 × 8 (m =
2) matrix can be defined, e.g.,

F = L4 = δ4[ 2 3 4 1 3 4 2 1 ] (20)

for (a) and (c). However, in the following, we will con-
siderm = 1 cases (i.e., n × n permutation matrices P ).
In regard to these matrices the following (multiplica-

tive) operations can be defined:

Ln1 · Ln2 = δn[i1 i2 · · · in] · δn[j1 j2 · · · jn]
= δn[ij1 ij2 · · · ijn

] (21)

7It should be noted that the order of numbers in the logical matrices is
different from the order of node numbers in Fig. 2.

An example of the multiplication of logical matrices can
be given as 8:,

L31 = δ4

[
3 4 1 2

] · δ4

[
2 3 4 1

]
= δ4

[
4 1 2 3

]
. (22)

Here, the original expression is

L31 =

⎡
⎢⎣

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎤
⎥⎦ ·

⎡
⎢⎣

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎦ =

⎡
⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎤
⎥⎦

When we write P = δ4[2 3 4 1]] and Pc =4 [3 4 1 2],
the following relations can be obtained:

Pc · P = P T = P−1, (23)

and

det P = det P T = −1, det Pc = 1. (24)

Here, Pc correspods to a reducible graph as shown in Fig.
3. Note that in regard to the general permutation matrix
P the following is valid:

det P = ±1. (25)

Next, let us consider the multiplication by a vector
x = [x1 x2 x3 x4]T . The logical matrix expression can
be given as follows:

δ4

[
2 3 4 1

]·[x̂1 x̂2 x̂3 x̂4]T = [x̂4 x̂1 x̂2 x̂3]T (26)

In general,

δn[i1 i2 · · · in] · [x̂1 x̂2 · · · x̂n]T

= [x̂i1 x̂i2 · · · x̂in
]T . (27)

Here, x̂j (j = 1, 2, · · · , n) denotes a value (simply ‘to-
ken’) of each place in [x1 x2 · · · xn]T , which corre-
sponds to the initial state of xj . In the Boolean networks,
these values are written as x̂j ∈ Dn.
In the analysis of these logical DEDSs, it is important

that the node y as shown in Fig. 4 (a) does not accept
two (or more) signals at a time. The addition rule will be
prohibited. On the other hand, signals from the node x as
shown in (b) may be allowed.

8These operations may be hard to understand in the mathematical ex-
pression. Here, the multiplication is given using calored characters.
From 2 of the right matrix to the 2nd element of left matrix 4, the 1st el-
ement 4 of the result matrix is obtained. Next, from 3 to the 3rd element
1, the 2nd element 1 is obtained, and so on.
On the computer programming, the above is easily realized by using

C-language, e.g.,
——————————————
for(i=1;i<=4;i++){

for(j=1;j<=4;j++){
if(i==d1[j]) dd[j]=d2[i];

}
}
——————————————
Here, d1[*] and d2[*] are the numbers in the right and left logical
matrices (22), respectively, and dd[*] is the number in the resulted
matrix.
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Fig. 4 Addition prohibited and drawable connections.

5. RECURRENT DYNAMIC SYSTEMS

When using the expression of (27), dynamic systems
(2) can be written as

[x1(th+1) x2(th+1) · · · xn(th+1)]T

= δn[i1 i2 · · · in] · [x1(th) x2(th) · · · xn(th)]T

Of course, it can also written by using the original ex-
pressiom:

x(th+1) = P ·x(th) = [δi1
n δi2

n · · · δin
n ] ·x(th) (28)

When the stationary condition x(th+1) = λx(th) is
assumed, (28) and (28) can be rewritten as:

(λI − δn[i1 i2 · · · in]) · x(th) = 0 (29)

and

(λI − P ) · x(th) = 0. (30)

The above expressions are regarding to the eigenvalues
problem of matrix P .
With respect to nonnegative matrix P , the following

theorem has been known.

Perron-Frobenius Theorem. When considering an
n × n nonnegative matrix P , we can give the following
spectral radius ρ [16, 17]:

ρ ≥ |λi|, ∀i ∈ {1, 2, · · · , n}, (31)

where λi are eigenvalues of P .

Z-matrix, P -matrix and M -matrix. In some mathe-
matic researchers, the following matrix is defined.

• A real square matrixA is called a Z-matrix if the off
diagonal elements are nonpositive [11, 18].

• A real square matrix A is called a P -matrix if each
principal minor is positive [11, 19, 20]. Moreover, it
is called a P0-matrix if each principal minor is non-
negative [11, 20].

Based on the above premise, Ostrowski’sM -matrix is
defined as follows. An M -matrix is a real square matrix
A with the following properties [10, 11, 18-24]:
(1)A = ρI − P
P : a real square matrix with nonnegative elements,
ρ: a positive number that is larger than the absolute
value of all the eigenvalues of P . That is, it corre-
spods to the above Z-matrix.

(2) In general, with respect to a real square matrix A
with nonpositive off diagonal elements,
(i) there exists x > 0 that satisfiesAx > 0;
(ii) A is nonsingular and all the elements of A−1

are non-negative;
(iii) the principal minors ofA are positive.

From the above theorem, when considering a permutation
matrix P , spectral radius ρ = 1 can be defined. There-
fore, matrix I−P for |λi| < 1 is considered to be anM -
matrix [25]. Here, it should be noted that complex vari-
ables for the eigenvalue and eigenvector cannot be used
because the addition of variables is prohibited in the logi-
cal systems. In the following numerical examples, a more
generalized form of matrix P will be defined. i.e., 9,

P̃ = diag{µ1, µ2, · · · , µn} · P , (32)

where 0 ≤ µi < 1 (i = 1, 2, · · · , n) are assumed to be
failures (or mistakes). In regard to DEDSs with additive
disturbances, the stability problem was studied in [26].
In the above considerations, P correspods to a matrix

Fk given in (14). Next, we consider recurrent dynamic
systems based on (16). That is,

x(th+1) = F (δk
m ⊗ x(th) = F ·

⎡
⎢⎢⎢⎣

x1(th)
x2(th)
...

xm(th)

⎤
⎥⎥⎥⎦ , (33)

where x(·) ∈ Z
n, xj(·) ∈ Z

n, F = [P1 P2 · · · Pm],
Pk ∈ P ⊂ Z

n×n (k = 1, 2, · · · ,m), and

xj(th) =

{
x(th) when j = k

0 when j �= k.

Since the expression of (33) corresponds to a time-
varying system, the relation between h and k should be
defined. The above concept will be applied to the follow-
ing examples.

6. NUMERICAL EXAMPLES

Example 1. This example is a simple recurrent system
written below.

x(th+1) = Px(th), (h = 0, 1, 2, · · · , 20), (34)

where x(th) ∈ Z
4 and 10

P = δ4[ 2 3 4 1 ] =

⎡
⎢⎢⎣

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦ .

Figure 5 shows the behavior of responses from x1(t0) =
3, x2(t0) = 5, x3(t0) = 7, x4(t0) = 9.

9Here, it is assumed that there exists µi ∈ R.
10P corresponds to Fk, (m = 1) in (14)
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Fig. 5 Sustainable responses for Example 1.

Fig. 6 Decreasing responses for Example 1.

Next, consider the case where some failure (or mis-
take) occurs in the system as given by (32), i.e.,

P̃ = diag{µ, 1, 1, 1} · δ4[ 2 3 4 1 ] (35)

=

⎡
⎢⎢⎣

0 0 0 µ
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦ ,

where µ = 0.8. In this case, the positive real eigenvalue
of P̃ becomes λ = 0.946. Obviously, |λi| < 1 (i =
1, 2, 3, 4), that is, ρ = 1 can be defined. Thus, it is known
that I−P̃ is anM -matrix. The responses become asymp-
totic as shown in Fig. 6.

Example 2. Consider the following recurrent system
based on (33) form = 5:

x(th+1) = Fx(th), (h = 0, 1, 2, · · · , 20), (36)

where x(th) ∈ Z
4 and F ∈ Z

4×20 is given as:

F = δ4[ 2 4 1 3
3 4 2 1
4 1 2 3
3 1 4 2
4 3 1 2 ]

(37)

by applying (b) ∼ (f) in cycles (19), and

xj(th) =

{
x(th) when j = k

0 when j �= k.

Here, we consider⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

k = 1 for h = 0, 1,

k = 2 for h = 2, 3,

k = 3 for h = 4, 5,

k = 4 for h = 6, 7,

k = 5 for h = 8, 9.

Fig. 7 Sustainable responses for Example 2.

Fig. 8 Decreasing responses for Example 2.

In regard to h ≥ 10, the above is assumed to be repeated.
The responses from x1(t0) = 3, x2(t0) = 5, x3(t0) = 7,
and x4(t0) = 9 are given as shown in Fig. 7. In this case,
the responses may be a little chaotic.
Next, consider the case where some failure (or mis-

take) occurs as given below:

xj(th) =

{
diag{µ, 1, 1, 1} · x(th) when j = k

0 when j �= k.

Figure 8 shows the case where µ = 0.8. On the other
hand, when the relation beween h and k (as an example)
was specified below:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

k = 1 for h = 0, 1, and µ = 1.1(initial step µ = 1.0),
k = 2 for h = 2, 3, and µ = 1.1,

k = 3 for h = 4, 5, and µ = 1.1,

k = 4 for h = 6, 7, and µ = 0.8,

k = 5 for h = 8, 9, and µ = 0.8,

the reponses become as shown in Fig. 9. Although they
may be chaotic, it is known that matrix I − P̃ for

P̃ = P̃ 2
5 P̃ 2

4 P̃ 2
3 P̃ 2

2 P̃ 2
1 (38)

is anM -matrix because the positive real eigenvalue of P̃
in (38) becomes 0.968, where,⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

P̃1 = diag{1.1, 1, 1, 1}δ4[2 4 1 3],
P̃2 = diag{1.1, 1, 1, 1}δ4[3 4 2 1],
P̃3 = diag{1.1, 1, 1, 1}δ4[4 1 2 3],
P̃4 = diag{0.8, 1, 1, 1}δ4[3 1 4 2],
P̃5 = diag{0.8, 1, 1, 1}δ4[4 3 1 2].

Thus, ρ = 1 can be defined. The system will be stable.
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Fig. 9 Decreased-like responses for Example 2.

7. CONCLUSIONS

The security and stability problems of discrete-event
dynamic systems (DEDSs) have been studied based on
semi-tensor product (STP) and Boolean networks con-
cept. In the analytical process, permutation and logical
matrix expressions of such structural nonlinear systems
were introduced. The relation to Perron-Frobenius the-
ory and irreducibleM -matrix were also described.
It has been said that the theory of descrete event dy-

namic systems is different from the usual theory of feed-
back control systems (so-called modern control theory).
However, the author thinks that continuous feedback con-
trol systems and event-driven dynamic systems should be
discussed in a unified theory.
Based on the concept ofM -matrix, the author has pre-

sented some stability problems of dynamic systems [25,
27, 28]. This paper is considered to be a sequel to those
research results.
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